搜索SPN中所有截断的不可能微分

Ting Cui, Chenhui Jin, Bin Zhang, Zhuo Chen, Guoshuang Zhang
{"title":"搜索SPN中所有截断的不可能微分","authors":"Ting Cui, Chenhui Jin, Bin Zhang, Zhuo Chen, Guoshuang Zhang","doi":"10.1049/iet-ifs.2015.0052","DOIUrl":null,"url":null,"abstract":"This study concentrates on finding all truncated impossible differentials in substitution-permutation networks (SPNs) ciphers. Instead of using the miss-in-the-middle approach, the authors propose a mathematical description of the truncated impossible differentials. First, they prove that all truncated impossible differentials in an r\n + 1 rounds SPN cipher could be obtained by searching entry `0' in D\n(\n P\n)\n r\n, where D\n(\n P\n) denotes the differential pattern matrix (DPM) of P\n-layer, thus the length of impossible differentials of an SPN cipher is upper bounded by the minimum integer r\n such that there is no entry `0' in D\n(\n P\n)\n r\n. Second, they provide two efficient algorithms to compute the DPMs for both bit-shuffles and matrices over GF(2\n n\n). Using these tools they prove that the longest truncated impossible differentials in SPN structure is 2-round, if the P\n-layer is designed as an maximum distance separable (MDS) matrix. Finally, all truncated impossible differentials of advanced encryption standard (AES), ARIA, AES-MDS, PRESENT, MAYA and Puffin are obtained.","PeriodicalId":13305,"journal":{"name":"IET Inf. Secur.","volume":"76 1","pages":"89-96"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Searching all truncated impossible differentials in SPN\",\"authors\":\"Ting Cui, Chenhui Jin, Bin Zhang, Zhuo Chen, Guoshuang Zhang\",\"doi\":\"10.1049/iet-ifs.2015.0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study concentrates on finding all truncated impossible differentials in substitution-permutation networks (SPNs) ciphers. Instead of using the miss-in-the-middle approach, the authors propose a mathematical description of the truncated impossible differentials. First, they prove that all truncated impossible differentials in an r\\n + 1 rounds SPN cipher could be obtained by searching entry `0' in D\\n(\\n P\\n)\\n r\\n, where D\\n(\\n P\\n) denotes the differential pattern matrix (DPM) of P\\n-layer, thus the length of impossible differentials of an SPN cipher is upper bounded by the minimum integer r\\n such that there is no entry `0' in D\\n(\\n P\\n)\\n r\\n. Second, they provide two efficient algorithms to compute the DPMs for both bit-shuffles and matrices over GF(2\\n n\\n). Using these tools they prove that the longest truncated impossible differentials in SPN structure is 2-round, if the P\\n-layer is designed as an maximum distance separable (MDS) matrix. Finally, all truncated impossible differentials of advanced encryption standard (AES), ARIA, AES-MDS, PRESENT, MAYA and Puffin are obtained.\",\"PeriodicalId\":13305,\"journal\":{\"name\":\"IET Inf. Secur.\",\"volume\":\"76 1\",\"pages\":\"89-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-ifs.2015.0052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-ifs.2015.0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文主要研究替换置换网络(SPNs)密码中所有截断的不可能微分。而不是使用中间缺失的方法,作者提出了截断不可能微分的数学描述。首先,他们证明了r + 1轮SPN密码中所有截断的不可能微分都可以通过搜索D(P) r中的项' 0'得到,其中D(P)表示P层的微分模式矩阵(DPM),因此SPN密码的不可能微分长度的上界是最小整数r,使得D(P) r中不存在项' 0'。他们提供了两种有效的算法来计算位洗刷和矩阵在GF(2n)上的dpm。使用这些工具,他们证明了SPN结构中最长的截断不可能微分是2轮的,如果p层被设计为最大距离可分离(MDS)矩阵。最后得到了高级加密标准(AES)、ARIA、AES- mds、PRESENT、MAYA和Puffin的所有截断不可能微分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Searching all truncated impossible differentials in SPN
This study concentrates on finding all truncated impossible differentials in substitution-permutation networks (SPNs) ciphers. Instead of using the miss-in-the-middle approach, the authors propose a mathematical description of the truncated impossible differentials. First, they prove that all truncated impossible differentials in an r + 1 rounds SPN cipher could be obtained by searching entry `0' in D ( P ) r , where D ( P ) denotes the differential pattern matrix (DPM) of P -layer, thus the length of impossible differentials of an SPN cipher is upper bounded by the minimum integer r such that there is no entry `0' in D ( P ) r . Second, they provide two efficient algorithms to compute the DPMs for both bit-shuffles and matrices over GF(2 n ). Using these tools they prove that the longest truncated impossible differentials in SPN structure is 2-round, if the P -layer is designed as an maximum distance separable (MDS) matrix. Finally, all truncated impossible differentials of advanced encryption standard (AES), ARIA, AES-MDS, PRESENT, MAYA and Puffin are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信