{"title":"选择性金属沉积,提高生产率","authors":"R. Rhoades, R. Mavliev, K. Gottfried","doi":"10.1109/ASMC49169.2020.9185368","DOIUrl":null,"url":null,"abstract":"A novel method for selective deposition of metal features has been developed and evaluated for several different metallization applications in device manufacturing and advanced packaging technologies. Selectroplating® is based on a selective chemical modification (SCM) of field areas of a wafer and can be implemented for either a fill-based integration, such as Cu dual damascene, or an additive process such as plating of wide conductive lines. In either integration, the primary benefit of selective deposition is to prevent deposition of metal in areas between desired features thus eliminating the need to remove excess bulk metal in the next step.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"26 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Metal Deposition To Increase Productivity\",\"authors\":\"R. Rhoades, R. Mavliev, K. Gottfried\",\"doi\":\"10.1109/ASMC49169.2020.9185368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method for selective deposition of metal features has been developed and evaluated for several different metallization applications in device manufacturing and advanced packaging technologies. Selectroplating® is based on a selective chemical modification (SCM) of field areas of a wafer and can be implemented for either a fill-based integration, such as Cu dual damascene, or an additive process such as plating of wide conductive lines. In either integration, the primary benefit of selective deposition is to prevent deposition of metal in areas between desired features thus eliminating the need to remove excess bulk metal in the next step.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"26 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Selective Metal Deposition To Increase Productivity
A novel method for selective deposition of metal features has been developed and evaluated for several different metallization applications in device manufacturing and advanced packaging technologies. Selectroplating® is based on a selective chemical modification (SCM) of field areas of a wafer and can be implemented for either a fill-based integration, such as Cu dual damascene, or an additive process such as plating of wide conductive lines. In either integration, the primary benefit of selective deposition is to prevent deposition of metal in areas between desired features thus eliminating the need to remove excess bulk metal in the next step.