{"title":"石墨烯- m0s2杂化结构增强多孔硅基SPR传感器的灵敏度","authors":"M. Rahman, M. B. Hossain, M. Rana","doi":"10.1109/ICECTE.2016.7879607","DOIUrl":null,"url":null,"abstract":"In this paper a theoretical porous silicon surface based plasmon resonance (SPR) sensor has been presented consisting graphene-Melybdenum sulphide (MoS2) hybrid structure for enhancing sensor detection sensitivity. The biosensor uses perfectly matched layer (PML) boundary condition incorporating on its computational domain to improve its surface plasmon resonance characteristics. Here, graphene-MoS2 hybrid sheet is used to detect the refractive index change of the sensor surface, which is cause of the reaction of biomolecules. Our calculations show that the graphene-MoS2 hybrid structure on silicon porous sensor has 25% more sensitivity than the conventional silicon resonant sensor. The enhanced sensitivity is for increasing SPR angle about 25% by adding graphene-MoS2 hybrid structure.","PeriodicalId":6578,"journal":{"name":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","volume":"07 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sensitivity enhancement of porous silicon based SPR sensor using graphene-M0S2 hybrid structure\",\"authors\":\"M. Rahman, M. B. Hossain, M. Rana\",\"doi\":\"10.1109/ICECTE.2016.7879607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a theoretical porous silicon surface based plasmon resonance (SPR) sensor has been presented consisting graphene-Melybdenum sulphide (MoS2) hybrid structure for enhancing sensor detection sensitivity. The biosensor uses perfectly matched layer (PML) boundary condition incorporating on its computational domain to improve its surface plasmon resonance characteristics. Here, graphene-MoS2 hybrid sheet is used to detect the refractive index change of the sensor surface, which is cause of the reaction of biomolecules. Our calculations show that the graphene-MoS2 hybrid structure on silicon porous sensor has 25% more sensitivity than the conventional silicon resonant sensor. The enhanced sensitivity is for increasing SPR angle about 25% by adding graphene-MoS2 hybrid structure.\",\"PeriodicalId\":6578,\"journal\":{\"name\":\"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)\",\"volume\":\"07 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECTE.2016.7879607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTE.2016.7879607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensitivity enhancement of porous silicon based SPR sensor using graphene-M0S2 hybrid structure
In this paper a theoretical porous silicon surface based plasmon resonance (SPR) sensor has been presented consisting graphene-Melybdenum sulphide (MoS2) hybrid structure for enhancing sensor detection sensitivity. The biosensor uses perfectly matched layer (PML) boundary condition incorporating on its computational domain to improve its surface plasmon resonance characteristics. Here, graphene-MoS2 hybrid sheet is used to detect the refractive index change of the sensor surface, which is cause of the reaction of biomolecules. Our calculations show that the graphene-MoS2 hybrid structure on silicon porous sensor has 25% more sensitivity than the conventional silicon resonant sensor. The enhanced sensitivity is for increasing SPR angle about 25% by adding graphene-MoS2 hybrid structure.