基于Cauchy-Riemann约束和下界变形发散的三维差分图像配准

IF 1.9 3区 数学 Q2 Mathematics
Huan Han, Zhengping Wang
{"title":"基于Cauchy-Riemann约束和下界变形发散的三维差分图像配准","authors":"Huan Han, Zhengping Wang","doi":"10.1051/m2an/2022080","DOIUrl":null,"url":null,"abstract":"In order to eliminate mesh folding in 3D image registration problem, we propose a 3D diffeomorphic image registration model with Cauchy-Riemann constraint  and lower bounded deformation divergence.  This model preserves the local shape and ensures no mesh folding. The existence of solution for the proposed model is proved. Furthermore, an alternating directional projection 3D image registration algorithm is presented to solve the proposed model.  Moreover, numerical tests show that the proposed algorithm is competitive compared with the other three algorithms.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D diffeomorphic image registration with Cauchy-Riemann constraint  and lower bounded deformation divergence\",\"authors\":\"Huan Han, Zhengping Wang\",\"doi\":\"10.1051/m2an/2022080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to eliminate mesh folding in 3D image registration problem, we propose a 3D diffeomorphic image registration model with Cauchy-Riemann constraint  and lower bounded deformation divergence.  This model preserves the local shape and ensures no mesh folding. The existence of solution for the proposed model is proved. Furthermore, an alternating directional projection 3D image registration algorithm is presented to solve the proposed model.  Moreover, numerical tests show that the proposed algorithm is competitive compared with the other three algorithms.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2022080\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022080","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

为了消除三维图像配准中的网格折叠问题,提出了一种具有柯西-黎曼约束和下界变形发散的三维微分同构图像配准模型。该模型保留了局部形状,并确保没有网格折叠。证明了模型解的存在性。在此基础上,提出了一种交替方向投影的三维图像配准算法。数值实验表明,该算法与其他三种算法相比具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D diffeomorphic image registration with Cauchy-Riemann constraint  and lower bounded deformation divergence
In order to eliminate mesh folding in 3D image registration problem, we propose a 3D diffeomorphic image registration model with Cauchy-Riemann constraint  and lower bounded deformation divergence.  This model preserves the local shape and ensures no mesh folding. The existence of solution for the proposed model is proved. Furthermore, an alternating directional projection 3D image registration algorithm is presented to solve the proposed model.  Moreover, numerical tests show that the proposed algorithm is competitive compared with the other three algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信