机会感知的自主和分布式招聘和数据收集框架

Güliz Seray Tuncay, G. Benincasa, A. Helmy
{"title":"机会感知的自主和分布式招聘和数据收集框架","authors":"Güliz Seray Tuncay, G. Benincasa, A. Helmy","doi":"10.1145/2436196.2436219","DOIUrl":null,"url":null,"abstract":"People-centric sensing is a novel approach that exploits the sensing capabilities offered by smartphones and the mobility of users to sense large scale areas without requiring the deployment of sensors in-situ. Given the ubiquitous nature of smartphones, people-centric sensing is a viable and efficient solution for crowdsourcing data. In this work, we propose a fully distributed, opportunistic sensing framework that involves two main components which both work in an ad hoc fashion: Recruitment and Data Collection. We analyzed the feasibility of our distributed approach for both components through preliminary simulations. The results show that our recruitment method is able to select 66% of the nodes that are appropriate for the sensing activity and 88% of the messages sent by these selected nodes reach the sink by using our data collection method.","PeriodicalId":43578,"journal":{"name":"Mobile Computing and Communications Review","volume":"3 1","pages":"50-53"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Autonomous and distributed recruitment and data collection framework for opportunistic sensing\",\"authors\":\"Güliz Seray Tuncay, G. Benincasa, A. Helmy\",\"doi\":\"10.1145/2436196.2436219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People-centric sensing is a novel approach that exploits the sensing capabilities offered by smartphones and the mobility of users to sense large scale areas without requiring the deployment of sensors in-situ. Given the ubiquitous nature of smartphones, people-centric sensing is a viable and efficient solution for crowdsourcing data. In this work, we propose a fully distributed, opportunistic sensing framework that involves two main components which both work in an ad hoc fashion: Recruitment and Data Collection. We analyzed the feasibility of our distributed approach for both components through preliminary simulations. The results show that our recruitment method is able to select 66% of the nodes that are appropriate for the sensing activity and 88% of the messages sent by these selected nodes reach the sink by using our data collection method.\",\"PeriodicalId\":43578,\"journal\":{\"name\":\"Mobile Computing and Communications Review\",\"volume\":\"3 1\",\"pages\":\"50-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile Computing and Communications Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2436196.2436219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Computing and Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2436196.2436219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

以人为中心的传感是一种新颖的方法,它利用智能手机提供的传感能力和用户的移动性,在不需要现场部署传感器的情况下,对大面积区域进行传感。鉴于智能手机无处不在的特性,以人为中心的传感是众包数据的可行且有效的解决方案。在这项工作中,我们提出了一个完全分布式的机会传感框架,其中包括两个主要组成部分,它们都以临时方式工作:招募和数据收集。我们通过初步的仿真分析了我们的分布式方法在两个组件上的可行性。结果表明,我们的招募方法能够选择66%适合感知活动的节点,并且这些被选中的节点发送的88%的消息通过我们的数据收集方法到达sink。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous and distributed recruitment and data collection framework for opportunistic sensing
People-centric sensing is a novel approach that exploits the sensing capabilities offered by smartphones and the mobility of users to sense large scale areas without requiring the deployment of sensors in-situ. Given the ubiquitous nature of smartphones, people-centric sensing is a viable and efficient solution for crowdsourcing data. In this work, we propose a fully distributed, opportunistic sensing framework that involves two main components which both work in an ad hoc fashion: Recruitment and Data Collection. We analyzed the feasibility of our distributed approach for both components through preliminary simulations. The results show that our recruitment method is able to select 66% of the nodes that are appropriate for the sensing activity and 88% of the messages sent by these selected nodes reach the sink by using our data collection method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信