两栖突击车入水动力学特性数值分析

Y. Heo, Taehyung Kim
{"title":"两栖突击车入水动力学特性数值分析","authors":"Y. Heo, Taehyung Kim","doi":"10.9766/kimst.2023.26.2.159","DOIUrl":null,"url":null,"abstract":"In the present study, the dynamic behavior characteristics of an amphibious assault vehicle during water entry were analyzed using STAR-CCM+, a commercial computational fluid dynamics(CFD) code. All computations were performed using an overset mesh system and a RANS based flow-solver coupled with dynamic fluid-body interaction(DFBI) solver for simulating three degrees of freedom motion. For numerical validation of the solver, a water entry simulation of inclined circular cylinder was conducted and it was compared between an existing experiment data and CFD results. The pitch angle variation and the trajectory of the circular cylinder during water entry shows good agreement with previous experimental and numerical studies. For the water entry simulations of the amphibious assault vehicle, the analysis of dynamic behaviors of the amphibious assault vehicle with different slope angles, submerged depths and initial velocities were conducted. It is confirmed that the steep slope angle increases the submerged volume of the amphibious assault vehicle, so the buoyancy acting on the vehicle is increased and the moved distance for the re-flotation is decreased. It is also revealed that the submerged volume is increased, bow-up phenomenon occur earlier.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":"05 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis on Dynamic Behavior Characteristics of an Amphibious Assault Vehicle during Water Entry\",\"authors\":\"Y. Heo, Taehyung Kim\",\"doi\":\"10.9766/kimst.2023.26.2.159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, the dynamic behavior characteristics of an amphibious assault vehicle during water entry were analyzed using STAR-CCM+, a commercial computational fluid dynamics(CFD) code. All computations were performed using an overset mesh system and a RANS based flow-solver coupled with dynamic fluid-body interaction(DFBI) solver for simulating three degrees of freedom motion. For numerical validation of the solver, a water entry simulation of inclined circular cylinder was conducted and it was compared between an existing experiment data and CFD results. The pitch angle variation and the trajectory of the circular cylinder during water entry shows good agreement with previous experimental and numerical studies. For the water entry simulations of the amphibious assault vehicle, the analysis of dynamic behaviors of the amphibious assault vehicle with different slope angles, submerged depths and initial velocities were conducted. It is confirmed that the steep slope angle increases the submerged volume of the amphibious assault vehicle, so the buoyancy acting on the vehicle is increased and the moved distance for the re-flotation is decreased. It is also revealed that the submerged volume is increased, bow-up phenomenon occur earlier.\",\"PeriodicalId\":17292,\"journal\":{\"name\":\"Journal of the Korea Institute of Military Science and Technology\",\"volume\":\"05 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Institute of Military Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9766/kimst.2023.26.2.159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2023.26.2.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用商用计算流体动力学(CFD)软件STAR-CCM+,对某两栖突击车入水过程中的动力学行为特征进行了分析。所有计算均使用覆盖网格系统和基于RANS的流动求解器以及模拟三自由度运动的动态流体-体相互作用(DFBI)求解器进行。为了对求解器进行数值验证,进行了倾斜圆柱的入水模拟,并将已有实验数据与CFD结果进行了比较。实验结果与数值模拟结果吻合较好。针对两栖攻击车的入水仿真,分析了不同坡角、淹没深度和初速条件下两栖攻击车的动力学行为。验证了陡坡角增大了两栖突击车的沉水体积,从而增大了作用在两栖突击车上的浮力,减小了再浮的移动距离。淹没体积增大,弓形上升现象发生时间提前。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Analysis on Dynamic Behavior Characteristics of an Amphibious Assault Vehicle during Water Entry
In the present study, the dynamic behavior characteristics of an amphibious assault vehicle during water entry were analyzed using STAR-CCM+, a commercial computational fluid dynamics(CFD) code. All computations were performed using an overset mesh system and a RANS based flow-solver coupled with dynamic fluid-body interaction(DFBI) solver for simulating three degrees of freedom motion. For numerical validation of the solver, a water entry simulation of inclined circular cylinder was conducted and it was compared between an existing experiment data and CFD results. The pitch angle variation and the trajectory of the circular cylinder during water entry shows good agreement with previous experimental and numerical studies. For the water entry simulations of the amphibious assault vehicle, the analysis of dynamic behaviors of the amphibious assault vehicle with different slope angles, submerged depths and initial velocities were conducted. It is confirmed that the steep slope angle increases the submerged volume of the amphibious assault vehicle, so the buoyancy acting on the vehicle is increased and the moved distance for the re-flotation is decreased. It is also revealed that the submerged volume is increased, bow-up phenomenon occur earlier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信