Stein流形上复杂接触结构的h原理

Pub Date : 2018-10-30 DOI:10.4310/JSG.2020.V18.N3.A4
F. Forstnerič
{"title":"Stein流形上复杂接触结构的h原理","authors":"F. Forstnerič","doi":"10.4310/JSG.2020.V18.N3.A4","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the notion of a formal complex contact structure on an odd dimensional complex manifold. Our main result is that every formal complex contact structure on a Stein manifold $X$ is homotopic to a holomorphic contact structure on a Stein domain $\\Omega\\subset X$ which is diffeotopic to $X$. We also prove a parametric h-principle in this setting, analogous to Gromov's h-principle for contact structures on smooth open manifolds. On Stein threefolds we obtain a complete homotopy classification of formal complex contact structures. Our methods also furnish a parametric h-principle for germs of holomorphic contact structures along totally real submanifolds of class $\\mathscr C^2$ in arbitrary complex manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"H-principle for complex contact structures on Stein manifolds\",\"authors\":\"F. Forstnerič\",\"doi\":\"10.4310/JSG.2020.V18.N3.A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the notion of a formal complex contact structure on an odd dimensional complex manifold. Our main result is that every formal complex contact structure on a Stein manifold $X$ is homotopic to a holomorphic contact structure on a Stein domain $\\\\Omega\\\\subset X$ which is diffeotopic to $X$. We also prove a parametric h-principle in this setting, analogous to Gromov's h-principle for contact structures on smooth open manifolds. On Stein threefolds we obtain a complete homotopy classification of formal complex contact structures. Our methods also furnish a parametric h-principle for germs of holomorphic contact structures along totally real submanifolds of class $\\\\mathscr C^2$ in arbitrary complex manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N3.A4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N3.A4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文引入了奇维复流形上形式复接触结构的概念。我们的主要结果是:在Stein流形$X$上的每一个形式的复接触结构都与Stein定域$\ \子集X$上的全纯接触结构是同伦的,而这个全纯接触结构是微分于$X$的。在这种情况下,我们也证明了一个参数h原理,类似于光滑开流形上接触结构的Gromov h原理。在Stein三折上,我们得到了形式复杂接触结构的完全同伦分类。我们的方法还提供了在任意复流形中沿C^2$类全实子流形的全纯接触结构胚的参数h原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
H-principle for complex contact structures on Stein manifolds
In this paper we introduce the notion of a formal complex contact structure on an odd dimensional complex manifold. Our main result is that every formal complex contact structure on a Stein manifold $X$ is homotopic to a holomorphic contact structure on a Stein domain $\Omega\subset X$ which is diffeotopic to $X$. We also prove a parametric h-principle in this setting, analogous to Gromov's h-principle for contact structures on smooth open manifolds. On Stein threefolds we obtain a complete homotopy classification of formal complex contact structures. Our methods also furnish a parametric h-principle for germs of holomorphic contact structures along totally real submanifolds of class $\mathscr C^2$ in arbitrary complex manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信