{"title":"Stein流形上复杂接触结构的h原理","authors":"F. Forstnerič","doi":"10.4310/JSG.2020.V18.N3.A4","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the notion of a formal complex contact structure on an odd dimensional complex manifold. Our main result is that every formal complex contact structure on a Stein manifold $X$ is homotopic to a holomorphic contact structure on a Stein domain $\\Omega\\subset X$ which is diffeotopic to $X$. We also prove a parametric h-principle in this setting, analogous to Gromov's h-principle for contact structures on smooth open manifolds. On Stein threefolds we obtain a complete homotopy classification of formal complex contact structures. Our methods also furnish a parametric h-principle for germs of holomorphic contact structures along totally real submanifolds of class $\\mathscr C^2$ in arbitrary complex manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"H-principle for complex contact structures on Stein manifolds\",\"authors\":\"F. Forstnerič\",\"doi\":\"10.4310/JSG.2020.V18.N3.A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the notion of a formal complex contact structure on an odd dimensional complex manifold. Our main result is that every formal complex contact structure on a Stein manifold $X$ is homotopic to a holomorphic contact structure on a Stein domain $\\\\Omega\\\\subset X$ which is diffeotopic to $X$. We also prove a parametric h-principle in this setting, analogous to Gromov's h-principle for contact structures on smooth open manifolds. On Stein threefolds we obtain a complete homotopy classification of formal complex contact structures. Our methods also furnish a parametric h-principle for germs of holomorphic contact structures along totally real submanifolds of class $\\\\mathscr C^2$ in arbitrary complex manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N3.A4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N3.A4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
H-principle for complex contact structures on Stein manifolds
In this paper we introduce the notion of a formal complex contact structure on an odd dimensional complex manifold. Our main result is that every formal complex contact structure on a Stein manifold $X$ is homotopic to a holomorphic contact structure on a Stein domain $\Omega\subset X$ which is diffeotopic to $X$. We also prove a parametric h-principle in this setting, analogous to Gromov's h-principle for contact structures on smooth open manifolds. On Stein threefolds we obtain a complete homotopy classification of formal complex contact structures. Our methods also furnish a parametric h-principle for germs of holomorphic contact structures along totally real submanifolds of class $\mathscr C^2$ in arbitrary complex manifolds.