粘性布朗运动的随机微分方程

Pub Date : 2014-10-24 DOI:10.1080/17442508.2014.899600
H. Engelbert, G. Peskir
{"title":"粘性布朗运动的随机微分方程","authors":"H. Engelbert, G. Peskir","doi":"10.1080/17442508.2014.899600","DOIUrl":null,"url":null,"abstract":"We study (i) the stochastic differential equation (SDE) systemfor Brownian motion X in sticky at 0, and (ii) the SDE systemfor reflecting Brownian motion X in sticky at 0, where X starts at x in the state space, is a given constant, is a local time of X at 0 and B is a standard Brownian motion. We prove that both systems (i) have a jointly unique weak solution and (ii) have no strong solution. The latter fact verifies Skorokhod's conjecture on sticky Brownian motion and provides alternative arguments to those given in the literature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Stochastic differential equations for sticky Brownian motion\",\"authors\":\"H. Engelbert, G. Peskir\",\"doi\":\"10.1080/17442508.2014.899600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study (i) the stochastic differential equation (SDE) systemfor Brownian motion X in sticky at 0, and (ii) the SDE systemfor reflecting Brownian motion X in sticky at 0, where X starts at x in the state space, is a given constant, is a local time of X at 0 and B is a standard Brownian motion. We prove that both systems (i) have a jointly unique weak solution and (ii) have no strong solution. The latter fact verifies Skorokhod's conjecture on sticky Brownian motion and provides alternative arguments to those given in the literature.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.899600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.899600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

我们研究了(i)粘性0处布朗运动X的随机微分方程(SDE)系统,以及(ii)反映粘性0处布朗运动X的随机微分方程系统,其中X在状态空间中从X开始,是给定常数,是X在0处的局部时间,B是标准布朗运动。证明了两个系统(i)有一个联合唯一的弱解,(ii)没有强解。后一个事实证实了斯科罗霍德关于粘性布朗运动的猜想,并提供了文献中给出的替代论据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stochastic differential equations for sticky Brownian motion
We study (i) the stochastic differential equation (SDE) systemfor Brownian motion X in sticky at 0, and (ii) the SDE systemfor reflecting Brownian motion X in sticky at 0, where X starts at x in the state space, is a given constant, is a local time of X at 0 and B is a standard Brownian motion. We prove that both systems (i) have a jointly unique weak solution and (ii) have no strong solution. The latter fact verifies Skorokhod's conjecture on sticky Brownian motion and provides alternative arguments to those given in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信