Wuroud Al-Fadhli, R. Kurma, D. Kovyazin, Y. Muhammad
{"title":"利用井下水沉技术开采薄层剩余油提高采收率的建模与仿真。以大布尔根油田为例。","authors":"Wuroud Al-Fadhli, R. Kurma, D. Kovyazin, Y. Muhammad","doi":"10.2118/194839-MS","DOIUrl":null,"url":null,"abstract":"\n The case study describes a modeling and simulation study of an inverted ESP completion to address three fundamental objectives. A) Increasing the ultimate oil recovery in the massive sands of Cretaceous age in Greater Burgan field by managing water production B) Mitigating the rapid water coning conditions in this high permeable water drive reservoir and C) Designing an optimal operating strategy with Downhole Water Sink (DWS) to control water production and manage well performance. A 2×2km sector was carved out from the full field geological model with 12 wells including the study well. The study well was producing at high water cut at the time of the study. All static properties were updated, and the model was history matched for production, pressure and saturation. Several sensitivity runs were performed, and prediction scenarios were run for 5 years to observe well production behavior in time. The well model was setup with an inverted ESP between straddle packers to produce water from below OWC and inject into bottom reservoir with a production string above to produce from the oil zone. This setting ensured a reverse oil cone being generated from below OWC in the reservoir under production. The aquifer model was finite in size enabling bottom water influx. Simulation results showed that implementation of DWS technology made the water production reduced by 18% during five years with an increase in oil production of nearly 25% in the study well. To maintain continuous well offtake rate, a range of water rates to be produced and injected to bottom reservoir have been studied. Several iterative runs were made to investigate the best completion interval and injection & production rates. The profiles of oil water interface near well bore indicated good reduction in the cone height as compared to normal completion. The results also showed significant improvement in oil recovery within the drainage radius of the well from the simulations. Simulation results provided good understanding of the saturation change near well bore area under different production rates. Prediction runs were made for sustainable oil production under natural flowing condition and the conditions to switch over to production under artificial lift. Production of thin layers of remaining oil from within high permeable massive Burgan middle sands has been a high concern due to very high water cuts because of coning. The study results have provided encouraging option with DWS technique to improve recovery from the reservoir.","PeriodicalId":11321,"journal":{"name":"Day 3 Wed, March 20, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling and Simulation to Produce Thin Layers of Remaining Oil Using Downhole Water Sink Technique for Improved Oil Recovery. A Case Study in Greater Burgan Field.\",\"authors\":\"Wuroud Al-Fadhli, R. Kurma, D. Kovyazin, Y. Muhammad\",\"doi\":\"10.2118/194839-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The case study describes a modeling and simulation study of an inverted ESP completion to address three fundamental objectives. A) Increasing the ultimate oil recovery in the massive sands of Cretaceous age in Greater Burgan field by managing water production B) Mitigating the rapid water coning conditions in this high permeable water drive reservoir and C) Designing an optimal operating strategy with Downhole Water Sink (DWS) to control water production and manage well performance. A 2×2km sector was carved out from the full field geological model with 12 wells including the study well. The study well was producing at high water cut at the time of the study. All static properties were updated, and the model was history matched for production, pressure and saturation. Several sensitivity runs were performed, and prediction scenarios were run for 5 years to observe well production behavior in time. The well model was setup with an inverted ESP between straddle packers to produce water from below OWC and inject into bottom reservoir with a production string above to produce from the oil zone. This setting ensured a reverse oil cone being generated from below OWC in the reservoir under production. The aquifer model was finite in size enabling bottom water influx. Simulation results showed that implementation of DWS technology made the water production reduced by 18% during five years with an increase in oil production of nearly 25% in the study well. To maintain continuous well offtake rate, a range of water rates to be produced and injected to bottom reservoir have been studied. Several iterative runs were made to investigate the best completion interval and injection & production rates. The profiles of oil water interface near well bore indicated good reduction in the cone height as compared to normal completion. The results also showed significant improvement in oil recovery within the drainage radius of the well from the simulations. Simulation results provided good understanding of the saturation change near well bore area under different production rates. Prediction runs were made for sustainable oil production under natural flowing condition and the conditions to switch over to production under artificial lift. Production of thin layers of remaining oil from within high permeable massive Burgan middle sands has been a high concern due to very high water cuts because of coning. The study results have provided encouraging option with DWS technique to improve recovery from the reservoir.\",\"PeriodicalId\":11321,\"journal\":{\"name\":\"Day 3 Wed, March 20, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, March 20, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194839-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 20, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194839-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Simulation to Produce Thin Layers of Remaining Oil Using Downhole Water Sink Technique for Improved Oil Recovery. A Case Study in Greater Burgan Field.
The case study describes a modeling and simulation study of an inverted ESP completion to address three fundamental objectives. A) Increasing the ultimate oil recovery in the massive sands of Cretaceous age in Greater Burgan field by managing water production B) Mitigating the rapid water coning conditions in this high permeable water drive reservoir and C) Designing an optimal operating strategy with Downhole Water Sink (DWS) to control water production and manage well performance. A 2×2km sector was carved out from the full field geological model with 12 wells including the study well. The study well was producing at high water cut at the time of the study. All static properties were updated, and the model was history matched for production, pressure and saturation. Several sensitivity runs were performed, and prediction scenarios were run for 5 years to observe well production behavior in time. The well model was setup with an inverted ESP between straddle packers to produce water from below OWC and inject into bottom reservoir with a production string above to produce from the oil zone. This setting ensured a reverse oil cone being generated from below OWC in the reservoir under production. The aquifer model was finite in size enabling bottom water influx. Simulation results showed that implementation of DWS technology made the water production reduced by 18% during five years with an increase in oil production of nearly 25% in the study well. To maintain continuous well offtake rate, a range of water rates to be produced and injected to bottom reservoir have been studied. Several iterative runs were made to investigate the best completion interval and injection & production rates. The profiles of oil water interface near well bore indicated good reduction in the cone height as compared to normal completion. The results also showed significant improvement in oil recovery within the drainage radius of the well from the simulations. Simulation results provided good understanding of the saturation change near well bore area under different production rates. Prediction runs were made for sustainable oil production under natural flowing condition and the conditions to switch over to production under artificial lift. Production of thin layers of remaining oil from within high permeable massive Burgan middle sands has been a high concern due to very high water cuts because of coning. The study results have provided encouraging option with DWS technique to improve recovery from the reservoir.