McKean-Vlasov SDEs的半参数估计

IF 1.5 Q2 PHYSICS, MATHEMATICAL
D. Belomestny, Vytaut.e Pilipauskait.e, M. Podolskij
{"title":"McKean-Vlasov SDEs的半参数估计","authors":"D. Belomestny, Vytaut.e Pilipauskait.e, M. Podolskij","doi":"10.1214/22-aihp1261","DOIUrl":null,"url":null,"abstract":"In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We propose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Semiparametric estimation of McKean–Vlasov SDEs\",\"authors\":\"D. Belomestny, Vytaut.e Pilipauskait.e, M. Podolskij\",\"doi\":\"10.1214/22-aihp1261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We propose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了一类McKean-Vlasov随机微分方程的半参数估计问题。我们的目的是在观测相应粒子系统的基础上估计MV-SDE的漂移系数。我们提出了一种半参数估计方法,并推导了估计量的收敛速率。进一步证明了所得速率在极大极小意义上是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiparametric estimation of McKean–Vlasov SDEs
In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We propose a semiparametric estimation procedure and derive the rates of convergence for the resulting estimator. We further prove that the obtained rates are essentially optimal in the minimax sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信