{"title":"混合模型在双重膨胀计数数据中的应用","authors":"Monika Arora, N. Chaganty","doi":"10.3390/analytics2010014","DOIUrl":null,"url":null,"abstract":"In health and social science and other fields where count data analysis is important, zero-inflated models have been employed when the frequency of zero count is high (inflated). Due to multiple reasons, there are scenarios in which an additional count value of k > 0 occurs with high frequency. The zero- and k-inflated Poisson distribution model (ZkIP) is more appropriate for such situations. The ZkIP model is a mixture distribution with three components: degenerate distributions at 0 and k count and a Poisson distribution. In this article, we propose an alternative and computationally fast expectation–maximization (EM) algorithm to obtain the parameter estimates for grouped zero and k-inflated count data. The asymptotic standard errors are derived using the complete data approach. We compare the zero- and k-inflated Poisson model with its zero-inflated and non-inflated counterparts. The best model is selected based on commonly used criteria. The theoretical results are supplemented with the analysis of two real-life datasets from health sciences.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Mixture Models for Doubly Inflated Count Data\",\"authors\":\"Monika Arora, N. Chaganty\",\"doi\":\"10.3390/analytics2010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In health and social science and other fields where count data analysis is important, zero-inflated models have been employed when the frequency of zero count is high (inflated). Due to multiple reasons, there are scenarios in which an additional count value of k > 0 occurs with high frequency. The zero- and k-inflated Poisson distribution model (ZkIP) is more appropriate for such situations. The ZkIP model is a mixture distribution with three components: degenerate distributions at 0 and k count and a Poisson distribution. In this article, we propose an alternative and computationally fast expectation–maximization (EM) algorithm to obtain the parameter estimates for grouped zero and k-inflated count data. The asymptotic standard errors are derived using the complete data approach. We compare the zero- and k-inflated Poisson model with its zero-inflated and non-inflated counterparts. The best model is selected based on commonly used criteria. The theoretical results are supplemented with the analysis of two real-life datasets from health sciences.\",\"PeriodicalId\":93078,\"journal\":{\"name\":\"Big data analytics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big data analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/analytics2010014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Mixture Models for Doubly Inflated Count Data
In health and social science and other fields where count data analysis is important, zero-inflated models have been employed when the frequency of zero count is high (inflated). Due to multiple reasons, there are scenarios in which an additional count value of k > 0 occurs with high frequency. The zero- and k-inflated Poisson distribution model (ZkIP) is more appropriate for such situations. The ZkIP model is a mixture distribution with three components: degenerate distributions at 0 and k count and a Poisson distribution. In this article, we propose an alternative and computationally fast expectation–maximization (EM) algorithm to obtain the parameter estimates for grouped zero and k-inflated count data. The asymptotic standard errors are derived using the complete data approach. We compare the zero- and k-inflated Poisson model with its zero-inflated and non-inflated counterparts. The best model is selected based on commonly used criteria. The theoretical results are supplemented with the analysis of two real-life datasets from health sciences.