对称张量场的Sobolev空间上的射线变换I:高阶Reshetnyak公式

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Venky Krishnan, V. Sharafutdinov
{"title":"对称张量场的Sobolev空间上的射线变换I:高阶Reshetnyak公式","authors":"Venky Krishnan, V. Sharafutdinov","doi":"10.3934/ipi.2021076","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>For an integer <inline-formula><tex-math id=\"M1\">\\begin{document}$ r\\ge0 $\\end{document}</tex-math></inline-formula>, we prove the <inline-formula><tex-math id=\"M2\">\\begin{document}$ r^{\\mathrm{th}} $\\end{document}</tex-math></inline-formula> order Reshetnyak formula for the ray transform of rank <inline-formula><tex-math id=\"M3\">\\begin{document}$ m $\\end{document}</tex-math></inline-formula> symmetric tensor fields on <inline-formula><tex-math id=\"M4\">\\begin{document}$ {{\\mathbb R}}^n $\\end{document}</tex-math></inline-formula>. Roughly speaking, for a tensor field <inline-formula><tex-math id=\"M5\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula>, the order <inline-formula><tex-math id=\"M6\">\\begin{document}$ r $\\end{document}</tex-math></inline-formula> refers to <inline-formula><tex-math id=\"M7\">\\begin{document}$ L^2 $\\end{document}</tex-math></inline-formula>-integrability of higher order derivatives of the Fourier transform <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\widehat f $\\end{document}</tex-math></inline-formula> over spheres centered at the origin. Certain differential operators <inline-formula><tex-math id=\"M9\">\\begin{document}$ A^{(m,r,l)}\\ (0\\le l\\le r) $\\end{document}</tex-math></inline-formula> on the sphere <inline-formula><tex-math id=\"M10\">\\begin{document}$ {{\\mathbb S}}^{n-1} $\\end{document}</tex-math></inline-formula> are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any <inline-formula><tex-math id=\"M11\">\\begin{document}$ r $\\end{document}</tex-math></inline-formula> although the volume of calculations grows fast with <inline-formula><tex-math id=\"M12\">\\begin{document}$ r $\\end{document}</tex-math></inline-formula>. The algorithm is realized for small values of <inline-formula><tex-math id=\"M13\">\\begin{document}$ r $\\end{document}</tex-math></inline-formula> and Reshetnyak formulas of orders <inline-formula><tex-math id=\"M14\">\\begin{document}$ 0,1,2 $\\end{document}</tex-math></inline-formula> are presented in an explicit form.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"51 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas\",\"authors\":\"Venky Krishnan, V. Sharafutdinov\",\"doi\":\"10.3934/ipi.2021076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>For an integer <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ r\\\\ge0 $\\\\end{document}</tex-math></inline-formula>, we prove the <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ r^{\\\\mathrm{th}} $\\\\end{document}</tex-math></inline-formula> order Reshetnyak formula for the ray transform of rank <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ m $\\\\end{document}</tex-math></inline-formula> symmetric tensor fields on <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ {{\\\\mathbb R}}^n $\\\\end{document}</tex-math></inline-formula>. Roughly speaking, for a tensor field <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula>, the order <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ r $\\\\end{document}</tex-math></inline-formula> refers to <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ L^2 $\\\\end{document}</tex-math></inline-formula>-integrability of higher order derivatives of the Fourier transform <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ \\\\widehat f $\\\\end{document}</tex-math></inline-formula> over spheres centered at the origin. Certain differential operators <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ A^{(m,r,l)}\\\\ (0\\\\le l\\\\le r) $\\\\end{document}</tex-math></inline-formula> on the sphere <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ {{\\\\mathbb S}}^{n-1} $\\\\end{document}</tex-math></inline-formula> are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ r $\\\\end{document}</tex-math></inline-formula> although the volume of calculations grows fast with <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ r $\\\\end{document}</tex-math></inline-formula>. The algorithm is realized for small values of <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ r $\\\\end{document}</tex-math></inline-formula> and Reshetnyak formulas of orders <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ 0,1,2 $\\\\end{document}</tex-math></inline-formula> are presented in an explicit form.</p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2021076\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021076","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

For an integer \begin{document}$ r\ge0 $\end{document}, we prove the \begin{document}$ r^{\mathrm{th}} $\end{document} order Reshetnyak formula for the ray transform of rank \begin{document}$ m $\end{document} symmetric tensor fields on \begin{document}$ {{\mathbb R}}^n $\end{document}. Roughly speaking, for a tensor field \begin{document}$ f $\end{document}, the order \begin{document}$ r $\end{document} refers to \begin{document}$ L^2 $\end{document}-integrability of higher order derivatives of the Fourier transform \begin{document}$ \widehat f $\end{document} over spheres centered at the origin. Certain differential operators \begin{document}$ A^{(m,r,l)}\ (0\le l\le r) $\end{document} on the sphere \begin{document}$ {{\mathbb S}}^{n-1} $\end{document} are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any \begin{document}$ r $\end{document} although the volume of calculations grows fast with \begin{document}$ r $\end{document}. The algorithm is realized for small values of \begin{document}$ r $\end{document} and Reshetnyak formulas of orders \begin{document}$ 0,1,2 $\end{document} are presented in an explicit form.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas

For an integer \begin{document}$ r\ge0 $\end{document}, we prove the \begin{document}$ r^{\mathrm{th}} $\end{document} order Reshetnyak formula for the ray transform of rank \begin{document}$ m $\end{document} symmetric tensor fields on \begin{document}$ {{\mathbb R}}^n $\end{document}. Roughly speaking, for a tensor field \begin{document}$ f $\end{document}, the order \begin{document}$ r $\end{document} refers to \begin{document}$ L^2 $\end{document}-integrability of higher order derivatives of the Fourier transform \begin{document}$ \widehat f $\end{document} over spheres centered at the origin. Certain differential operators \begin{document}$ A^{(m,r,l)}\ (0\le l\le r) $\end{document} on the sphere \begin{document}$ {{\mathbb S}}^{n-1} $\end{document} are main ingredients of the formula. The operators are defined by an algorithm that can be applied for any \begin{document}$ r $\end{document} although the volume of calculations grows fast with \begin{document}$ r $\end{document}. The algorithm is realized for small values of \begin{document}$ r $\end{document} and Reshetnyak formulas of orders \begin{document}$ 0,1,2 $\end{document} are presented in an explicit form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信