介电泳力驱动流动问题的有限元逼近

IF 1.9 3区 数学 Q2 Mathematics
P. Gerstner, V. Heuveline
{"title":"介电泳力驱动流动问题的有限元逼近","authors":"P. Gerstner, V. Heuveline","doi":"10.1051/m2an/2023031","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a full discretization scheme for the instationary thermal-electro-\n\nhydrodynamic (TEHD) Boussinesq equations. These equations model the dynamics of a non-isothermal,\n\ndielectric fluid under the influence of a dielectrophoretic (DEP) force. Our scheme combines an H 1 -\n\nconformal finite element method for spatial discretization with a backward differentiation formula\n\n(BDF) for time stepping. The resulting scheme allows for a decoupled solution of the individual parts\n\nof this multi-physics system. Moreover, we derive a priori convergence rates that are of first and sec-\n\nond order in time, depending on how the individual ingredients of the BDF scheme are chosen and of\n\noptimal order in space. In doing so, special care is taken of modeling the DEP force, since its original\n\nform is a cubic term. The obtained error estimates are verified by numerical experiments.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element approximation of dielectrophoretic force driven flow problems\",\"authors\":\"P. Gerstner, V. Heuveline\",\"doi\":\"10.1051/m2an/2023031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a full discretization scheme for the instationary thermal-electro-\\n\\nhydrodynamic (TEHD) Boussinesq equations. These equations model the dynamics of a non-isothermal,\\n\\ndielectric fluid under the influence of a dielectrophoretic (DEP) force. Our scheme combines an H 1 -\\n\\nconformal finite element method for spatial discretization with a backward differentiation formula\\n\\n(BDF) for time stepping. The resulting scheme allows for a decoupled solution of the individual parts\\n\\nof this multi-physics system. Moreover, we derive a priori convergence rates that are of first and sec-\\n\\nond order in time, depending on how the individual ingredients of the BDF scheme are chosen and of\\n\\noptimal order in space. In doing so, special care is taken of modeling the DEP force, since its original\\n\\nform is a cubic term. The obtained error estimates are verified by numerical experiments.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023031\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023031","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了热电流体动力学(TEHD) Boussinesq方程的完全离散化方法。这些方程模拟了介电力作用下非等温介质流体的动力学。我们的方案结合了用于空间离散化的h1 -保形有限元方法和用于时间步进的后向微分公式。由此产生的方案允许对这个多物理场系统的各个部分进行解耦解决。此外,我们导出了一个先验的收敛率,它在时间上是一阶和二阶的,这取决于如何选择BDF格式的各个成分和在空间上的最优阶。在这样做的时候,要特别注意DEP力的建模,因为它的原始形式是一个三次项。通过数值实验验证了所得误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element approximation of dielectrophoretic force driven flow problems
In this paper, we propose a full discretization scheme for the instationary thermal-electro- hydrodynamic (TEHD) Boussinesq equations. These equations model the dynamics of a non-isothermal, dielectric fluid under the influence of a dielectrophoretic (DEP) force. Our scheme combines an H 1 - conformal finite element method for spatial discretization with a backward differentiation formula (BDF) for time stepping. The resulting scheme allows for a decoupled solution of the individual parts of this multi-physics system. Moreover, we derive a priori convergence rates that are of first and sec- ond order in time, depending on how the individual ingredients of the BDF scheme are chosen and of optimal order in space. In doing so, special care is taken of modeling the DEP force, since its original form is a cubic term. The obtained error estimates are verified by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信