{"title":"神经信息检索导论","authors":"Bhaskar Mitra, Nick Craswell","doi":"10.1561/1500000061","DOIUrl":null,"url":null,"abstract":"Neural models have been employed in many Information Retrieval scenarios, including ad-hoc retrieval, recommender systems, multi-media search, and even conversational systems that generate answers in response to natural language questions. An Introduction to Neural Information Retrieval provides a tutorial introduction to neural methods for ranking documents in response to a query, an important IR task. The monograph provides a complete picture of neural information retrieval techniques that culminate in supervised neural learning to rank models including deep neural network architectures that are trained end-to-end for ranking tasks. In reaching this point, the authors cover all the important topics, including the learning to rank framework and an overview of deep neural networks. This monograph provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"32 1","pages":"1-126"},"PeriodicalIF":8.3000,"publicationDate":"2018-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"300","resultStr":"{\"title\":\"An Introduction to Neural Information Retrieval\",\"authors\":\"Bhaskar Mitra, Nick Craswell\",\"doi\":\"10.1561/1500000061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural models have been employed in many Information Retrieval scenarios, including ad-hoc retrieval, recommender systems, multi-media search, and even conversational systems that generate answers in response to natural language questions. An Introduction to Neural Information Retrieval provides a tutorial introduction to neural methods for ranking documents in response to a query, an important IR task. The monograph provides a complete picture of neural information retrieval techniques that culminate in supervised neural learning to rank models including deep neural network architectures that are trained end-to-end for ranking tasks. In reaching this point, the authors cover all the important topics, including the learning to rank framework and an overview of deep neural networks. This monograph provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.\",\"PeriodicalId\":48829,\"journal\":{\"name\":\"Foundations and Trends in Information Retrieval\",\"volume\":\"32 1\",\"pages\":\"1-126\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2018-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"300\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Information Retrieval\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1561/1500000061\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000061","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Neural models have been employed in many Information Retrieval scenarios, including ad-hoc retrieval, recommender systems, multi-media search, and even conversational systems that generate answers in response to natural language questions. An Introduction to Neural Information Retrieval provides a tutorial introduction to neural methods for ranking documents in response to a query, an important IR task. The monograph provides a complete picture of neural information retrieval techniques that culminate in supervised neural learning to rank models including deep neural network architectures that are trained end-to-end for ranking tasks. In reaching this point, the authors cover all the important topics, including the learning to rank framework and an overview of deep neural networks. This monograph provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.
期刊介绍:
The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field.
Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.