通过知识整合进行课堂增量学习

Marcus Vinícius de Carvalho, Mahardhika Pratama, Jie Zhang, Yajuan San
{"title":"通过知识整合进行课堂增量学习","authors":"Marcus Vinícius de Carvalho, Mahardhika Pratama, Jie Zhang, Yajuan San","doi":"10.48550/arXiv.2209.02112","DOIUrl":null,"url":null,"abstract":"Catastrophic forgetting has been a significant problem hindering the deployment of deep learning algorithms in the continual learning setting. Numerous methods have been proposed to address the catastrophic forgetting problem where an agent loses its generalization power of old tasks while learning new tasks. We put forward an alternative strategy to handle the catastrophic forgetting with knowledge amalgamation (CFA), which learns a student network from multiple heterogeneous teacher models specializing in previous tasks and can be applied to current offline methods. The knowledge amalgamation process is carried out in a single-head manner with only a selected number of memorized samples and no annotations. The teachers and students do not need to share the same network structure, allowing heterogeneous tasks to be adapted to a compact or sparse data representation. We compare our method with competitive baselines from different strategies, demonstrating our approach's advantages.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"45 1","pages":"36-50"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Class-Incremental Learning via Knowledge Amalgamation\",\"authors\":\"Marcus Vinícius de Carvalho, Mahardhika Pratama, Jie Zhang, Yajuan San\",\"doi\":\"10.48550/arXiv.2209.02112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catastrophic forgetting has been a significant problem hindering the deployment of deep learning algorithms in the continual learning setting. Numerous methods have been proposed to address the catastrophic forgetting problem where an agent loses its generalization power of old tasks while learning new tasks. We put forward an alternative strategy to handle the catastrophic forgetting with knowledge amalgamation (CFA), which learns a student network from multiple heterogeneous teacher models specializing in previous tasks and can be applied to current offline methods. The knowledge amalgamation process is carried out in a single-head manner with only a selected number of memorized samples and no annotations. The teachers and students do not need to share the same network structure, allowing heterogeneous tasks to be adapted to a compact or sparse data representation. We compare our method with competitive baselines from different strategies, demonstrating our approach's advantages.\",\"PeriodicalId\":74091,\"journal\":{\"name\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"volume\":\"45 1\",\"pages\":\"36-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.02112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.02112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

灾难性遗忘一直是阻碍深度学习算法在持续学习环境中部署的一个重要问题。人们提出了许多方法来解决灾难性遗忘问题,即智能体在学习新任务时失去了对旧任务的泛化能力。我们提出了一种利用知识合并(CFA)来处理灾难性遗忘的替代策略,该策略从多个专攻先前任务的异构教师模型中学习学生网络,并可应用于当前的离线方法。知识合并过程以单头方式进行,只有选定数量的记忆样本,没有注释。教师和学生不需要共享相同的网络结构,允许异构任务适应紧凑或稀疏的数据表示。我们将我们的方法与来自不同策略的竞争性基线进行比较,展示了我们方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Class-Incremental Learning via Knowledge Amalgamation
Catastrophic forgetting has been a significant problem hindering the deployment of deep learning algorithms in the continual learning setting. Numerous methods have been proposed to address the catastrophic forgetting problem where an agent loses its generalization power of old tasks while learning new tasks. We put forward an alternative strategy to handle the catastrophic forgetting with knowledge amalgamation (CFA), which learns a student network from multiple heterogeneous teacher models specializing in previous tasks and can be applied to current offline methods. The knowledge amalgamation process is carried out in a single-head manner with only a selected number of memorized samples and no annotations. The teachers and students do not need to share the same network structure, allowing heterogeneous tasks to be adapted to a compact or sparse data representation. We compare our method with competitive baselines from different strategies, demonstrating our approach's advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信