一种改进的基于markov的最大熵模型用于Odia文本词性标注

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sagarika Pattnaik, Ajit Kumar Nayak
{"title":"一种改进的基于markov的最大熵模型用于Odia文本词性标注","authors":"Sagarika Pattnaik, Ajit Kumar Nayak","doi":"10.4018/ijdsst.286690","DOIUrl":null,"url":null,"abstract":"POS (Parts of Speech) tagging, a vital step in diverse Natural Language Processing (NLP) tasks has not drawn much attention in case of Odia a computationally under-developed language. The proposed hybrid method suggests a robust POS tagger for Odia. Observing the rich morphology of the language and unavailability of sufficient annotated text corpus a combination of machine learning and linguistic rules is adopted in the building of the tagger. The tagger is trained on tagged text corpus from the domain of tourism and is capable of obtaining a perceptible improvement in the result. Also an appreciable performance is observed for news articles texts of varied domains. The performance of proposed algorithm experimenting on Odia language shows its manifestation in dominating over existing methods like rule based, hidden Markov model (HMM), maximum entropy (ME) and conditional random field (CRF).","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Markov-Based Maximum-Entropy Model for POS Tagging of Odia Text\",\"authors\":\"Sagarika Pattnaik, Ajit Kumar Nayak\",\"doi\":\"10.4018/ijdsst.286690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"POS (Parts of Speech) tagging, a vital step in diverse Natural Language Processing (NLP) tasks has not drawn much attention in case of Odia a computationally under-developed language. The proposed hybrid method suggests a robust POS tagger for Odia. Observing the rich morphology of the language and unavailability of sufficient annotated text corpus a combination of machine learning and linguistic rules is adopted in the building of the tagger. The tagger is trained on tagged text corpus from the domain of tourism and is capable of obtaining a perceptible improvement in the result. Also an appreciable performance is observed for news articles texts of varied domains. The performance of proposed algorithm experimenting on Odia language shows its manifestation in dominating over existing methods like rule based, hidden Markov model (HMM), maximum entropy (ME) and conditional random field (CRF).\",\"PeriodicalId\":42414,\"journal\":{\"name\":\"International Journal of Decision Support System Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Decision Support System Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdsst.286690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.286690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

词性标注是各种自然语言处理(NLP)任务中的一个重要步骤,但在Odia这种计算欠发达的语言中却没有引起太多关注。所提出的混合方法为Odia提供了一种鲁棒的POS标注器。观察到语言丰富的形态学和没有足够的注释文本语料库,在标注器的构建中采用了机器学习和语言规则相结合的方法。该标记器是在旅游领域的标记文本语料库上进行训练的,并且能够在结果上获得明显的改进。对于不同领域的新闻文章文本,也观察到明显的性能。该算法在Odia语言上的实验表现为优于现有的基于规则、隐马尔可夫模型(HMM)、最大熵(ME)和条件随机场(CRF)等方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Markov-Based Maximum-Entropy Model for POS Tagging of Odia Text
POS (Parts of Speech) tagging, a vital step in diverse Natural Language Processing (NLP) tasks has not drawn much attention in case of Odia a computationally under-developed language. The proposed hybrid method suggests a robust POS tagger for Odia. Observing the rich morphology of the language and unavailability of sufficient annotated text corpus a combination of machine learning and linguistic rules is adopted in the building of the tagger. The tagger is trained on tagged text corpus from the domain of tourism and is capable of obtaining a perceptible improvement in the result. Also an appreciable performance is observed for news articles texts of varied domains. The performance of proposed algorithm experimenting on Odia language shows its manifestation in dominating over existing methods like rule based, hidden Markov model (HMM), maximum entropy (ME) and conditional random field (CRF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信