Pengcheng Wu, S. Hoi, Hao Xia, P. Zhao, Dayong Wang, C. Miao
{"title":"在线多模态深度相似学习及其在图像检索中的应用","authors":"Pengcheng Wu, S. Hoi, Hao Xia, P. Zhao, Dayong Wang, C. Miao","doi":"10.1145/2502081.2502112","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed extensive studies on distance metric learning (DML) for improving similarity search in multimedia information retrieval tasks. Despite their successes, most existing DML methods suffer from two critical limitations: (i) they typically attempt to learn a linear distance function on the input feature space, in which the assumption of linearity limits their capacity of measuring the similarity on complex patterns in real-world applications; (ii) they are often designed for learning distance metrics on uni-modal data, which may not effectively handle the similarity measures for multimedia objects with multimodal representations. To address these limitations, in this paper, we propose a novel framework of online multimodal deep similarity learning (OMDSL), which aims to optimally integrate multiple deep neural networks pretrained with stacked denoising autoencoder. In particular, the proposed framework explores a unified two-stage online learning scheme that consists of (i) learning a flexible nonlinear transformation function for each individual modality, and (ii) learning to find the optimal combination of multiple diverse modalities simultaneously in a coherent process. We conduct an extensive set of experiments to evaluate the performance of the proposed algorithms for multimodal image retrieval tasks, in which the encouraging results validate the effectiveness of the proposed technique.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"169","resultStr":"{\"title\":\"Online multimodal deep similarity learning with application to image retrieval\",\"authors\":\"Pengcheng Wu, S. Hoi, Hao Xia, P. Zhao, Dayong Wang, C. Miao\",\"doi\":\"10.1145/2502081.2502112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed extensive studies on distance metric learning (DML) for improving similarity search in multimedia information retrieval tasks. Despite their successes, most existing DML methods suffer from two critical limitations: (i) they typically attempt to learn a linear distance function on the input feature space, in which the assumption of linearity limits their capacity of measuring the similarity on complex patterns in real-world applications; (ii) they are often designed for learning distance metrics on uni-modal data, which may not effectively handle the similarity measures for multimedia objects with multimodal representations. To address these limitations, in this paper, we propose a novel framework of online multimodal deep similarity learning (OMDSL), which aims to optimally integrate multiple deep neural networks pretrained with stacked denoising autoencoder. In particular, the proposed framework explores a unified two-stage online learning scheme that consists of (i) learning a flexible nonlinear transformation function for each individual modality, and (ii) learning to find the optimal combination of multiple diverse modalities simultaneously in a coherent process. We conduct an extensive set of experiments to evaluate the performance of the proposed algorithms for multimodal image retrieval tasks, in which the encouraging results validate the effectiveness of the proposed technique.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"169\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online multimodal deep similarity learning with application to image retrieval
Recent years have witnessed extensive studies on distance metric learning (DML) for improving similarity search in multimedia information retrieval tasks. Despite their successes, most existing DML methods suffer from two critical limitations: (i) they typically attempt to learn a linear distance function on the input feature space, in which the assumption of linearity limits their capacity of measuring the similarity on complex patterns in real-world applications; (ii) they are often designed for learning distance metrics on uni-modal data, which may not effectively handle the similarity measures for multimedia objects with multimodal representations. To address these limitations, in this paper, we propose a novel framework of online multimodal deep similarity learning (OMDSL), which aims to optimally integrate multiple deep neural networks pretrained with stacked denoising autoencoder. In particular, the proposed framework explores a unified two-stage online learning scheme that consists of (i) learning a flexible nonlinear transformation function for each individual modality, and (ii) learning to find the optimal combination of multiple diverse modalities simultaneously in a coherent process. We conduct an extensive set of experiments to evaluate the performance of the proposed algorithms for multimodal image retrieval tasks, in which the encouraging results validate the effectiveness of the proposed technique.