{"title":"多酚与运动表现:人类数据综述","authors":"S. D’Angelo","doi":"10.5772/INTECHOPEN.85031","DOIUrl":null,"url":null,"abstract":"Exercise-induced aerobic bioenergetic reactions in mitochondria and cytosol increase production of reactive oxygen species. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. A lot of studies are about how effective dietary intervention and oral antioxidant supplementation may be in reducing oxidative stress in athletes who exercise intensively. Commonly used nonenzymatic supplements have been proposed as ways to prevent exercise-induced oxidative stress and hence improve adaptation responses to endurance training. Plant-derived bioactive compounds can repress inflammation by inhibit-ing oxidative damage and interacting with the immune system. This review focuses on polyphenols and phytochemicals present in the plant kingdom that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. This review will summarize some of the actual knowledge on polyphenolic compounds that have been demonstrated both to exert a significant effect in exercise-induced muscle damage and to play a biological/physiological role in improving physical performance. Overall, the pooled results show that polyphenols are viable supplements to improve performance in athletes.","PeriodicalId":20118,"journal":{"name":"Plant Physiological Aspects of Phenolic Compounds","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Polyphenols and Athletic Performance: A Review on Human Data\",\"authors\":\"S. D’Angelo\",\"doi\":\"10.5772/INTECHOPEN.85031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exercise-induced aerobic bioenergetic reactions in mitochondria and cytosol increase production of reactive oxygen species. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. A lot of studies are about how effective dietary intervention and oral antioxidant supplementation may be in reducing oxidative stress in athletes who exercise intensively. Commonly used nonenzymatic supplements have been proposed as ways to prevent exercise-induced oxidative stress and hence improve adaptation responses to endurance training. Plant-derived bioactive compounds can repress inflammation by inhibit-ing oxidative damage and interacting with the immune system. This review focuses on polyphenols and phytochemicals present in the plant kingdom that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. This review will summarize some of the actual knowledge on polyphenolic compounds that have been demonstrated both to exert a significant effect in exercise-induced muscle damage and to play a biological/physiological role in improving physical performance. Overall, the pooled results show that polyphenols are viable supplements to improve performance in athletes.\",\"PeriodicalId\":20118,\"journal\":{\"name\":\"Plant Physiological Aspects of Phenolic Compounds\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiological Aspects of Phenolic Compounds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.85031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiological Aspects of Phenolic Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polyphenols and Athletic Performance: A Review on Human Data
Exercise-induced aerobic bioenergetic reactions in mitochondria and cytosol increase production of reactive oxygen species. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. A lot of studies are about how effective dietary intervention and oral antioxidant supplementation may be in reducing oxidative stress in athletes who exercise intensively. Commonly used nonenzymatic supplements have been proposed as ways to prevent exercise-induced oxidative stress and hence improve adaptation responses to endurance training. Plant-derived bioactive compounds can repress inflammation by inhibit-ing oxidative damage and interacting with the immune system. This review focuses on polyphenols and phytochemicals present in the plant kingdom that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. This review will summarize some of the actual knowledge on polyphenolic compounds that have been demonstrated both to exert a significant effect in exercise-induced muscle damage and to play a biological/physiological role in improving physical performance. Overall, the pooled results show that polyphenols are viable supplements to improve performance in athletes.