基于强化学习的复杂半导体设备高效调度

Doug Suerich, Terry Young
{"title":"基于强化学习的复杂半导体设备高效调度","authors":"Doug Suerich, Terry Young","doi":"10.1109/ASMC49169.2020.9185293","DOIUrl":null,"url":null,"abstract":"Semiconductor cluster tools add an integral component to the modern semiconductor manufacturing process. These complex tools provide a flexible deployment option to group multiple processing steps into a single piece of equipment, allowing for more efficient processing. They also contribute to a reduction in the number of times a wafer must go through the atmospheric-vacuum-atmospheric cycle. These highly automated tools present a complex scheduling challenge where process-specific requirements are balanced against a need to achieve maximum wafer throughput in a fault tolerant manner. Previous work demonstrated that a reinforcement learning algorithm would be suitable for automated generation of efficient planners for simple tools. This investigation looked at how these same techniques could be extended to operate on more complex equipment.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"60 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reinforcement Learning for Efficient Scheduling in Complex Semiconductor Equipment\",\"authors\":\"Doug Suerich, Terry Young\",\"doi\":\"10.1109/ASMC49169.2020.9185293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor cluster tools add an integral component to the modern semiconductor manufacturing process. These complex tools provide a flexible deployment option to group multiple processing steps into a single piece of equipment, allowing for more efficient processing. They also contribute to a reduction in the number of times a wafer must go through the atmospheric-vacuum-atmospheric cycle. These highly automated tools present a complex scheduling challenge where process-specific requirements are balanced against a need to achieve maximum wafer throughput in a fault tolerant manner. Previous work demonstrated that a reinforcement learning algorithm would be suitable for automated generation of efficient planners for simple tools. This investigation looked at how these same techniques could be extended to operate on more complex equipment.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"60 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

半导体集群工具为现代半导体制造过程增加了不可或缺的组成部分。这些复杂的工具提供了灵活的部署选项,可以将多个处理步骤分组到单个设备中,从而实现更高效的处理。它们还有助于减少晶圆片必须经过大气-真空-大气循环的次数。这些高度自动化的工具带来了复杂的调度挑战,其中特定工艺的要求与以容错方式实现最大晶圆吞吐量的需求相平衡。先前的工作表明,强化学习算法将适用于简单工具的高效规划器的自动生成。这项调查着眼于如何将这些相同的技术扩展到更复杂的设备上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning for Efficient Scheduling in Complex Semiconductor Equipment
Semiconductor cluster tools add an integral component to the modern semiconductor manufacturing process. These complex tools provide a flexible deployment option to group multiple processing steps into a single piece of equipment, allowing for more efficient processing. They also contribute to a reduction in the number of times a wafer must go through the atmospheric-vacuum-atmospheric cycle. These highly automated tools present a complex scheduling challenge where process-specific requirements are balanced against a need to achieve maximum wafer throughput in a fault tolerant manner. Previous work demonstrated that a reinforcement learning algorithm would be suitable for automated generation of efficient planners for simple tools. This investigation looked at how these same techniques could be extended to operate on more complex equipment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信