关于持久同调的几何方法

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Henry Adams, Baris Coskunuzer
{"title":"关于持久同调的几何方法","authors":"Henry Adams, Baris Coskunuzer","doi":"10.1137/21M1422914","DOIUrl":null,"url":null,"abstract":"We introduce several geometric notions, including the width of a homology class, to the theory of persistent homology. These ideas provide geometric interpretations of persistence diagrams. Indeed, we give quantitative and geometric descriptions of the\"life span\"or\"persistence\"of a homology class. As a case study, we analyze the power filtration on unweighted graphs, and provide explicit bounds for the life spans of homology classes in persistence diagrams in all dimensions.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Geometric Approaches on Persistent Homology\",\"authors\":\"Henry Adams, Baris Coskunuzer\",\"doi\":\"10.1137/21M1422914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce several geometric notions, including the width of a homology class, to the theory of persistent homology. These ideas provide geometric interpretations of persistence diagrams. Indeed, we give quantitative and geometric descriptions of the\\\"life span\\\"or\\\"persistence\\\"of a homology class. As a case study, we analyze the power filtration on unweighted graphs, and provide explicit bounds for the life spans of homology classes in persistence diagrams in all dimensions.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21M1422914\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21M1422914","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

我们引入了几个几何概念,包括同调类的宽度,来讨论持久同调理论。这些思想提供了持久性图的几何解释。实际上,我们给出了同调类的“寿命”或“持久性”的定量和几何描述。作为案例研究,我们分析了未加权图上的幂过滤,并给出了在所有维度上的持久图中同构类的寿命的显式界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Approaches on Persistent Homology
We introduce several geometric notions, including the width of a homology class, to the theory of persistent homology. These ideas provide geometric interpretations of persistence diagrams. Indeed, we give quantitative and geometric descriptions of the"life span"or"persistence"of a homology class. As a case study, we analyze the power filtration on unweighted graphs, and provide explicit bounds for the life spans of homology classes in persistence diagrams in all dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信