{"title":"$ \\text{R}^3 $中Neumann-Laplace算子格林函数的逐点界","authors":"D. Hoff","doi":"10.3934/krm.2021037","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in <inline-formula><tex-math id=\"M2\">\\begin{document}$ {\\bf R}^3 $\\end{document}</tex-math></inline-formula> subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of <inline-formula><tex-math id=\"M3\">\\begin{document}$ L^2 $\\end{document}</tex-math></inline-formula>-Sobolev space theory.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \\\\text{R}^3 $\",\"authors\":\"D. Hoff\",\"doi\":\"10.3934/krm.2021037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ {\\\\bf R}^3 $\\\\end{document}</tex-math></inline-formula> subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ L^2 $\\\\end{document}</tex-math></inline-formula>-Sobolev space theory.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2021037\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2021037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in \begin{document}$ {\bf R}^3 $\end{document} subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of \begin{document}$ L^2 $\end{document}-Sobolev space theory.
Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $
We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in \begin{document}$ {\bf R}^3 $\end{document} subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of \begin{document}$ L^2 $\end{document}-Sobolev space theory.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.