{"title":"$ \\text{R}^3 $中Neumann-Laplace算子格林函数的逐点界","authors":"D. Hoff","doi":"10.3934/krm.2021037","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in <inline-formula><tex-math id=\"M2\">\\begin{document}$ {\\bf R}^3 $\\end{document}</tex-math></inline-formula> subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of <inline-formula><tex-math id=\"M3\">\\begin{document}$ L^2 $\\end{document}</tex-math></inline-formula>-Sobolev space theory.</p>","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"57 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \\\\text{R}^3 $\",\"authors\":\"D. Hoff\",\"doi\":\"10.3934/krm.2021037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ {\\\\bf R}^3 $\\\\end{document}</tex-math></inline-formula> subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ L^2 $\\\\end{document}</tex-math></inline-formula>-Sobolev space theory.</p>\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2021037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2021037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in \begin{document}$ {\bf R}^3 $\end{document} subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of \begin{document}$ L^2 $\end{document}-Sobolev space theory.
Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $
We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in \begin{document}$ {\bf R}^3 $\end{document} subject to Neumann boundary conditions. The proofs require only ordinary calculus, scaling arguments and the most basic facts of \begin{document}$ L^2 $\end{document}-Sobolev space theory.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.