{"title":"强可逆结、不变量曲面和Atiyah-Singer签名定理","authors":"Antonio Alfieri, Keegan Boyle","doi":"10.1307/mmj/20226183","DOIUrl":null,"url":null,"abstract":"We use the G-signature theorem to define an invariant of strongly invertible knots analogous to the knot signature.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Strongly Invertible Knots, Invariant Surfaces, and the Atiyah–Singer Signature Theorem\",\"authors\":\"Antonio Alfieri, Keegan Boyle\",\"doi\":\"10.1307/mmj/20226183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the G-signature theorem to define an invariant of strongly invertible knots analogous to the knot signature.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20226183\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20226183","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.