物理对象的区域和轮廓识别

Annie Cuyt, Jan Sijbers, Brigitte Verdonk, Dirk Van Dyck
{"title":"物理对象的区域和轮廓识别","authors":"Annie Cuyt,&nbsp;Jan Sijbers,&nbsp;Brigitte Verdonk,&nbsp;Dirk Van Dyck","doi":"10.1002/anac.200410002","DOIUrl":null,"url":null,"abstract":"<p>The region occupied by and the contour of a physical object in 3-dimensional space are in a way dual or interchangeable characteristics of the object: the contour is the region's boundary and the region is contained inside the contour. In the same way the characterization of the object's contour by its Fourier descriptors, and the reconstruction of its region from the object's multidimensional moments, are also dual problems. While both problems are well-understood in two dimensions, the complexity increases tremendously when moving to the three-dimensional world.</p><p>In Section 2 we discuss how the latest techniques allow to reconstruct an object's shape from the knowledge of its moments. For 2D significantly different techniques must be used, compared to the general 3D case. In Section 3, the parameterization of a 2D contour onto a unit circle and a 3D surface onto a unit sphere is described. Furthermore, the theory of Fourier descriptors for 2D shape representation and the extension to 3D shape analysis are discussed.</p><p>The reader familiar with the use of either Fourier descriptors or moments as shape descriptors of physical objects may find the comparative discussion in the concluding section interesting. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 2","pages":"343-352"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410002","citationCount":"5","resultStr":"{\"title\":\"Region and Contour Identification of Physical Objects\",\"authors\":\"Annie Cuyt,&nbsp;Jan Sijbers,&nbsp;Brigitte Verdonk,&nbsp;Dirk Van Dyck\",\"doi\":\"10.1002/anac.200410002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The region occupied by and the contour of a physical object in 3-dimensional space are in a way dual or interchangeable characteristics of the object: the contour is the region's boundary and the region is contained inside the contour. In the same way the characterization of the object's contour by its Fourier descriptors, and the reconstruction of its region from the object's multidimensional moments, are also dual problems. While both problems are well-understood in two dimensions, the complexity increases tremendously when moving to the three-dimensional world.</p><p>In Section 2 we discuss how the latest techniques allow to reconstruct an object's shape from the knowledge of its moments. For 2D significantly different techniques must be used, compared to the general 3D case. In Section 3, the parameterization of a 2D contour onto a unit circle and a 3D surface onto a unit sphere is described. Furthermore, the theory of Fourier descriptors for 2D shape representation and the extension to 3D shape analysis are discussed.</p><p>The reader familiar with the use of either Fourier descriptors or moments as shape descriptors of physical objects may find the comparative discussion in the concluding section interesting. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 2\",\"pages\":\"343-352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410002\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

物体在三维空间中所占据的区域和其轮廓在某种程度上具有物体的双重或可互换的特征:轮廓是区域的边界,区域包含在轮廓中。同样,用物体的傅里叶描述子来描述物体的轮廓,以及用物体的多维矩来重建物体的区域,也是一个对偶问题。虽然这两个问题在二维世界中都很容易理解,但在三维世界中,复杂性会大大增加。在第2节中,我们讨论了最新的技术如何允许从其时刻的知识重建对象的形状。与一般的3D情况相比,2D必须使用明显不同的技术。在第3节中,描述了二维轮廓到单位圆和三维表面到单位球的参数化。进一步讨论了二维形状表示的傅里叶描述子理论及其在三维形状分析中的推广。熟悉使用傅里叶描述符或矩作为物理对象的形状描述符的读者可能会发现结论部分的比较讨论很有趣。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region and Contour Identification of Physical Objects

The region occupied by and the contour of a physical object in 3-dimensional space are in a way dual or interchangeable characteristics of the object: the contour is the region's boundary and the region is contained inside the contour. In the same way the characterization of the object's contour by its Fourier descriptors, and the reconstruction of its region from the object's multidimensional moments, are also dual problems. While both problems are well-understood in two dimensions, the complexity increases tremendously when moving to the three-dimensional world.

In Section 2 we discuss how the latest techniques allow to reconstruct an object's shape from the knowledge of its moments. For 2D significantly different techniques must be used, compared to the general 3D case. In Section 3, the parameterization of a 2D contour onto a unit circle and a 3D surface onto a unit sphere is described. Furthermore, the theory of Fourier descriptors for 2D shape representation and the extension to 3D shape analysis are discussed.

The reader familiar with the use of either Fourier descriptors or moments as shape descriptors of physical objects may find the comparative discussion in the concluding section interesting. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信