hessian矩阵稀疏模式的有效检测

R. Carter, S. Hossain, M. Sultana
{"title":"hessian矩阵稀疏模式的有效检测","authors":"R. Carter, S. Hossain, M. Sultana","doi":"10.1145/3055282.3055287","DOIUrl":null,"url":null,"abstract":"Evaluation of the Hessian matrix of a scalar function is a subproblem in many numerical optimization algorithms. For large-scale problems often the Hessian matrix is sparse and structured, and it is preferable to exploit such information when available. Using symmetry in the second derivative values of the components it is possible to detect the sparsity pattern of the Hessian via products of the Hessian matrix with specially chosen direction vectors. We use graph coloring methods and employ efficient sparse data structures to implement the sparsity pattern detection algorithms. Results from preliminary numerical testings are highly promising.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"23 1","pages":"151-154"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient detection of hessian matrix sparsity pattern\",\"authors\":\"R. Carter, S. Hossain, M. Sultana\",\"doi\":\"10.1145/3055282.3055287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of the Hessian matrix of a scalar function is a subproblem in many numerical optimization algorithms. For large-scale problems often the Hessian matrix is sparse and structured, and it is preferable to exploit such information when available. Using symmetry in the second derivative values of the components it is possible to detect the sparsity pattern of the Hessian via products of the Hessian matrix with specially chosen direction vectors. We use graph coloring methods and employ efficient sparse data structures to implement the sparsity pattern detection algorithms. Results from preliminary numerical testings are highly promising.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"23 1\",\"pages\":\"151-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055282.3055287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055282.3055287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

标量函数的Hessian矩阵的求值是许多数值优化算法中的一个子问题。对于大规模问题,通常Hessian矩阵是稀疏的和结构化的,并且最好在可用时利用这些信息。利用分量二阶导数值的对称性,可以通过Hessian矩阵与特定方向向量的乘积来检测Hessian的稀疏模式。我们使用图着色方法和高效的稀疏数据结构来实现稀疏模式检测算法。初步数值试验的结果非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient detection of hessian matrix sparsity pattern
Evaluation of the Hessian matrix of a scalar function is a subproblem in many numerical optimization algorithms. For large-scale problems often the Hessian matrix is sparse and structured, and it is preferable to exploit such information when available. Using symmetry in the second derivative values of the components it is possible to detect the sparsity pattern of the Hessian via products of the Hessian matrix with specially chosen direction vectors. We use graph coloring methods and employ efficient sparse data structures to implement the sparsity pattern detection algorithms. Results from preliminary numerical testings are highly promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信