{"title":"中红外超连续谱生成的铌酸锂-氮化硅混合平台","authors":"C. Lafforgue, M. Churaev, T. Kippenberg, C. Brès","doi":"10.1117/12.2649971","DOIUrl":null,"url":null,"abstract":"Integrated optics has shown itself very convenient for exploiting nonlinear processes as it results in high confinement factor, freedom of dispersion engineering and compactness. However, the choice of materials is crucial for the development of nonlinear systems. Ideally, one looks for a platform that offers high second and/or third order nonlinearities, low loss and ease of fabrication. Silicon nitride (Si3N4) is now proven to be a good platform for frequency conversion based on third order nonlinearity. Supercontinuum generation (SCG) was obtained in the near-IR and mid-IR regions by pumping waveguides with common fiber lasers. It resulted in broadband coherent combs extending in the mid-IR thanks to dispersive wave generation. Yet, Si3N4 does not exhibit any second order nonlinearity desirable for comb self-referencing via second-harmonic generation (SHG). On the other hand, lithium niobate (LiNbO3) is widely used in integrated photonics for second order nonlinear processes. In our work, we exploit a hybrid Si3N4-LiNbO3 photonic integrated platform that combines maturity and dispersion engineering capabilities of Si3N4 integrated photonics with second-order nonlinear properties of LiNbO3 bypassing challenging lithium niobate etching. We study numerically and experimentally the potential of SCG and SHG for frequency comb self-referencing on this platform when pumping with a fiber laser operating at 2 μm for mid-IR operation, a window useful for sensing as it contains many molecular signatures.","PeriodicalId":54670,"journal":{"name":"Opto-Electronics Review","volume":"43 1","pages":"124240M - 124240M-4"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid lithium niobate-on-silicon nitride platform for mid-IR supercontinuum generation\",\"authors\":\"C. Lafforgue, M. Churaev, T. Kippenberg, C. Brès\",\"doi\":\"10.1117/12.2649971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated optics has shown itself very convenient for exploiting nonlinear processes as it results in high confinement factor, freedom of dispersion engineering and compactness. However, the choice of materials is crucial for the development of nonlinear systems. Ideally, one looks for a platform that offers high second and/or third order nonlinearities, low loss and ease of fabrication. Silicon nitride (Si3N4) is now proven to be a good platform for frequency conversion based on third order nonlinearity. Supercontinuum generation (SCG) was obtained in the near-IR and mid-IR regions by pumping waveguides with common fiber lasers. It resulted in broadband coherent combs extending in the mid-IR thanks to dispersive wave generation. Yet, Si3N4 does not exhibit any second order nonlinearity desirable for comb self-referencing via second-harmonic generation (SHG). On the other hand, lithium niobate (LiNbO3) is widely used in integrated photonics for second order nonlinear processes. In our work, we exploit a hybrid Si3N4-LiNbO3 photonic integrated platform that combines maturity and dispersion engineering capabilities of Si3N4 integrated photonics with second-order nonlinear properties of LiNbO3 bypassing challenging lithium niobate etching. We study numerically and experimentally the potential of SCG and SHG for frequency comb self-referencing on this platform when pumping with a fiber laser operating at 2 μm for mid-IR operation, a window useful for sensing as it contains many molecular signatures.\",\"PeriodicalId\":54670,\"journal\":{\"name\":\"Opto-Electronics Review\",\"volume\":\"43 1\",\"pages\":\"124240M - 124240M-4\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Electronics Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2649971\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronics Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2649971","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Hybrid lithium niobate-on-silicon nitride platform for mid-IR supercontinuum generation
Integrated optics has shown itself very convenient for exploiting nonlinear processes as it results in high confinement factor, freedom of dispersion engineering and compactness. However, the choice of materials is crucial for the development of nonlinear systems. Ideally, one looks for a platform that offers high second and/or third order nonlinearities, low loss and ease of fabrication. Silicon nitride (Si3N4) is now proven to be a good platform for frequency conversion based on third order nonlinearity. Supercontinuum generation (SCG) was obtained in the near-IR and mid-IR regions by pumping waveguides with common fiber lasers. It resulted in broadband coherent combs extending in the mid-IR thanks to dispersive wave generation. Yet, Si3N4 does not exhibit any second order nonlinearity desirable for comb self-referencing via second-harmonic generation (SHG). On the other hand, lithium niobate (LiNbO3) is widely used in integrated photonics for second order nonlinear processes. In our work, we exploit a hybrid Si3N4-LiNbO3 photonic integrated platform that combines maturity and dispersion engineering capabilities of Si3N4 integrated photonics with second-order nonlinear properties of LiNbO3 bypassing challenging lithium niobate etching. We study numerically and experimentally the potential of SCG and SHG for frequency comb self-referencing on this platform when pumping with a fiber laser operating at 2 μm for mid-IR operation, a window useful for sensing as it contains many molecular signatures.
期刊介绍:
Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged.
It has been established for the publication of high quality original papers from the following fields:
Optical Design and Applications,
Image Processing
Metamaterials,
Optoelectronic Materials,
Micro-Opto-Electro-Mechanical Systems,
Infrared Physics and Technology,
Modelling of Optoelectronic Devices, Semiconductor Lasers
Technology and Fabrication of Optoelectronic Devices,
Photonic Crystals,
Laser Physics, Technology and Applications,
Optical Sensors and Applications,
Photovoltaics,
Biomedical Optics and Photonics