有限群中的集合Kp

IF 0.3 Q4 MECHANICS
A. I. Zabarina, E. A. Fomina
{"title":"有限群中的集合Kp","authors":"A. I. Zabarina, E. A. Fomina","doi":"10.17223/19988621/81/1","DOIUrl":null,"url":null,"abstract":"The study of the properties of the set Kp consisting of elements of a non-Abelian group that commute with exactly p elements of the group G is continued. In particular, this question is considered for groups of order p1p2...pk, k ≥ 3 and p2q, where рі, q are prime numbers. It is also proved that the set K5 is non-empty in the three-dimensional projective special linear group. This group has the same order as the alternating group A8, in which the set K5 is empty.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"75 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The set Kp in some finite groups\",\"authors\":\"A. I. Zabarina, E. A. Fomina\",\"doi\":\"10.17223/19988621/81/1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the properties of the set Kp consisting of elements of a non-Abelian group that commute with exactly p elements of the group G is continued. In particular, this question is considered for groups of order p1p2...pk, k ≥ 3 and p2q, where рі, q are prime numbers. It is also proved that the set K5 is non-empty in the three-dimensional projective special linear group. This group has the same order as the alternating group A8, in which the set K5 is empty.\",\"PeriodicalId\":43729,\"journal\":{\"name\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/19988621/81/1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/81/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

继续研究了由非阿贝尔群的元素与群G的恰好p个元素交换的集合Kp的性质。特别地,这个问题被考虑为p1p2…Pk, k≥3,p2q,其中r, q为素数。并证明了集合K5在三维射影特殊线性群中的非空性。该组与交替组A8具有相同的顺序,其中集合K5为空。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The set Kp in some finite groups
The study of the properties of the set Kp consisting of elements of a non-Abelian group that commute with exactly p elements of the group G is continued. In particular, this question is considered for groups of order p1p2...pk, k ≥ 3 and p2q, where рі, q are prime numbers. It is also proved that the set K5 is non-empty in the three-dimensional projective special linear group. This group has the same order as the alternating group A8, in which the set K5 is empty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信