基于Pareto前沿和不动点理论的改进多目标遗传算法

Jingjun Zhang, Yanmin Shang, Ruizhen Gao, Yuzhen Dong
{"title":"基于Pareto前沿和不动点理论的改进多目标遗传算法","authors":"Jingjun Zhang, Yanmin Shang, Ruizhen Gao, Yuzhen Dong","doi":"10.1109/IWISA.2009.5072719","DOIUrl":null,"url":null,"abstract":"For multi-objective optimization problems, an improved multi-objective genetic algorithm based on Pareto Front and Fixed Point Theory is proposed in this paper. In this Algorithm, the fixed point theory is introduced to multi-objective optimization questions and K1 triangulation is carried on to solutions for the weighting function constructed by all subfunctions, so the optimal problems are transferred to fixed point problems. The non-dominated-set is constructed by the method of exclusion. The experimental results show that this improved genetic algorithm convergent faster and is able to achieve a broader distribution of the Pareto optimal solution. Keywords— multi-objective optimization; Pareto Front; nondominated set; genetic algorithm; fixed point; K1 triangulation","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"119 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Multi-Objective Genetic Algorithm Based On Pareto Front and Fixed Point Theory\",\"authors\":\"Jingjun Zhang, Yanmin Shang, Ruizhen Gao, Yuzhen Dong\",\"doi\":\"10.1109/IWISA.2009.5072719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For multi-objective optimization problems, an improved multi-objective genetic algorithm based on Pareto Front and Fixed Point Theory is proposed in this paper. In this Algorithm, the fixed point theory is introduced to multi-objective optimization questions and K1 triangulation is carried on to solutions for the weighting function constructed by all subfunctions, so the optimal problems are transferred to fixed point problems. The non-dominated-set is constructed by the method of exclusion. The experimental results show that this improved genetic algorithm convergent faster and is able to achieve a broader distribution of the Pareto optimal solution. Keywords— multi-objective optimization; Pareto Front; nondominated set; genetic algorithm; fixed point; K1 triangulation\",\"PeriodicalId\":6327,\"journal\":{\"name\":\"2009 International Workshop on Intelligent Systems and Applications\",\"volume\":\"119 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2009.5072719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5072719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对多目标优化问题,提出了一种基于Pareto前沿和不动点理论的改进多目标遗传算法。该算法将不动点理论引入到多目标优化问题中,并对各子函数构造的权函数的解进行K1三角剖分,将最优问题转化为不动点问题。用排他法构造非支配集。实验结果表明,改进后的遗传算法收敛速度更快,能够得到分布范围更广的Pareto最优解。关键词:多目标优化;帕累托前沿;nondominated设置;遗传算法;不动点;K1三角
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Multi-Objective Genetic Algorithm Based On Pareto Front and Fixed Point Theory
For multi-objective optimization problems, an improved multi-objective genetic algorithm based on Pareto Front and Fixed Point Theory is proposed in this paper. In this Algorithm, the fixed point theory is introduced to multi-objective optimization questions and K1 triangulation is carried on to solutions for the weighting function constructed by all subfunctions, so the optimal problems are transferred to fixed point problems. The non-dominated-set is constructed by the method of exclusion. The experimental results show that this improved genetic algorithm convergent faster and is able to achieve a broader distribution of the Pareto optimal solution. Keywords— multi-objective optimization; Pareto Front; nondominated set; genetic algorithm; fixed point; K1 triangulation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信