动态流中顶点连通性的紧边界

Sepehr Assadi, Vihan Shah
{"title":"动态流中顶点连通性的紧边界","authors":"Sepehr Assadi, Vihan Shah","doi":"10.48550/arXiv.2211.04685","DOIUrl":null,"url":null,"abstract":"We present a streaming algorithm for the vertex connectivity problem in dynamic streams with a (nearly) optimal space bound: for any $n$-vertex graph $G$ and any integer $k \\geq 1$, our algorithm with high probability outputs whether or not $G$ is $k$-vertex-connected in a single pass using $\\widetilde{O}(k n)$ space. Our upper bound matches the known $\\Omega(k n)$ lower bound for this problem even in insertion-only streams -- which we extend to multi-pass algorithms in this paper -- and closes one of the last remaining gaps in our understanding of dynamic versus insertion-only streams. Our result is obtained via a novel analysis of the previous best dynamic streaming algorithm of Guha, McGregor, and Tench [PODS 2015] who obtained an $\\widetilde{O}(k^2 n)$ space algorithm for this problem. This also gives a model-independent algorithm for computing a\"certificate\"of $k$-vertex-connectivity as a union of $O(k^2\\log{n})$ spanning forests, each on a random subset of $O(n/k)$ vertices, which may be of independent interest.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"50 1","pages":"213-227"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Bounds for Vertex Connectivity in Dynamic Streams\",\"authors\":\"Sepehr Assadi, Vihan Shah\",\"doi\":\"10.48550/arXiv.2211.04685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a streaming algorithm for the vertex connectivity problem in dynamic streams with a (nearly) optimal space bound: for any $n$-vertex graph $G$ and any integer $k \\\\geq 1$, our algorithm with high probability outputs whether or not $G$ is $k$-vertex-connected in a single pass using $\\\\widetilde{O}(k n)$ space. Our upper bound matches the known $\\\\Omega(k n)$ lower bound for this problem even in insertion-only streams -- which we extend to multi-pass algorithms in this paper -- and closes one of the last remaining gaps in our understanding of dynamic versus insertion-only streams. Our result is obtained via a novel analysis of the previous best dynamic streaming algorithm of Guha, McGregor, and Tench [PODS 2015] who obtained an $\\\\widetilde{O}(k^2 n)$ space algorithm for this problem. This also gives a model-independent algorithm for computing a\\\"certificate\\\"of $k$-vertex-connectivity as a union of $O(k^2\\\\log{n})$ spanning forests, each on a random subset of $O(n/k)$ vertices, which may be of independent interest.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"50 1\",\"pages\":\"213-227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.04685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.04685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种具有(接近)最优空间边界的动态流中顶点连接问题的流算法:对于任何$n$ -顶点图$G$和任何整数$k \geq 1$,我们的算法具有高概率输出,无论$G$是否在使用$\widetilde{O}(k n)$空间的单次通过中是$k$ -顶点连接。我们的上界与这个问题的已知的$\Omega(k n)$下界相匹配,即使是在只插入的流中——我们在本文中扩展到多通道算法——并且关闭了我们对动态与只插入的流的理解中最后剩下的差距之一。我们的结果是通过对Guha, McGregor和Tench [PODS 2015]先前最佳动态流算法的新颖分析获得的,他们获得了针对该问题的$\widetilde{O}(k^2 n)$空间算法。这也给出了一个模型无关的算法,用于计算$k$ -顶点连通性的“证书”,作为$O(k^2\log{n})$跨越森林的联合,每个森林都在$O(n/k)$顶点的随机子集上,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Bounds for Vertex Connectivity in Dynamic Streams
We present a streaming algorithm for the vertex connectivity problem in dynamic streams with a (nearly) optimal space bound: for any $n$-vertex graph $G$ and any integer $k \geq 1$, our algorithm with high probability outputs whether or not $G$ is $k$-vertex-connected in a single pass using $\widetilde{O}(k n)$ space. Our upper bound matches the known $\Omega(k n)$ lower bound for this problem even in insertion-only streams -- which we extend to multi-pass algorithms in this paper -- and closes one of the last remaining gaps in our understanding of dynamic versus insertion-only streams. Our result is obtained via a novel analysis of the previous best dynamic streaming algorithm of Guha, McGregor, and Tench [PODS 2015] who obtained an $\widetilde{O}(k^2 n)$ space algorithm for this problem. This also gives a model-independent algorithm for computing a"certificate"of $k$-vertex-connectivity as a union of $O(k^2\log{n})$ spanning forests, each on a random subset of $O(n/k)$ vertices, which may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信