二氧化钛(TiO2)粉体悬浮多相催化剂光催化降解制药废水中的磺胺甲恶唑

Faten Kamil, S. A. Barno, Firas Shems, Amer G. Jihad, A. Abbas
{"title":"二氧化钛(TiO2)粉体悬浮多相催化剂光催化降解制药废水中的磺胺甲恶唑","authors":"Faten Kamil, S. A. Barno, Firas Shems, Amer G. Jihad, A. Abbas","doi":"10.53523/ijoirvol10i1id314","DOIUrl":null,"url":null,"abstract":"Some medications in aquatic media pose a serious environmental risk. Sulfamethoxazole (SMX) is a member of the sulfonamide group. Photocatalysis offers a promising technique to degrade organic pollutants into environmentally friendly substances. This study examined the effect of operating conditions (pH, time, and temperature) of the ultraviolet (UV)/TiO2 photocatalytic process on the degradation of SMX in an aqueous solution. Decreasing the pH value positively affects SMX degradation, and better removal values were obtained at a pH equal to 4. The optimum operating conditions for complete degradation in a solution containing 500 mg/L of SMX, TiO2 0.5 mg/L irradiation time of 420 min, and pH 4. Under these conditions, Chemical Oxygen Demand (COD) removal was 62.6% at a temperature of 25 ℃. The effect of temperature was studied at three temperatures (25, 40, and 60 ℃) with pH 4. The elevation of temperature increased the COD removal rate to 99.62% at 60 ℃. Finally, the results of the reaction kinetics study showed that a first-order kinetics model described organic contamination removal data over time, and the obtained activation energy was 42.195 kJ/mol.","PeriodicalId":14665,"journal":{"name":"Iraqi Journal of Industrial Research","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Degradation of Sulfamethoxazole from a Synthetic Pharmaceutical Wastewater Using Titanium Dioxide (TiO2) Powder as a Suspended Heterogeneous Catalyst\",\"authors\":\"Faten Kamil, S. A. Barno, Firas Shems, Amer G. Jihad, A. Abbas\",\"doi\":\"10.53523/ijoirvol10i1id314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some medications in aquatic media pose a serious environmental risk. Sulfamethoxazole (SMX) is a member of the sulfonamide group. Photocatalysis offers a promising technique to degrade organic pollutants into environmentally friendly substances. This study examined the effect of operating conditions (pH, time, and temperature) of the ultraviolet (UV)/TiO2 photocatalytic process on the degradation of SMX in an aqueous solution. Decreasing the pH value positively affects SMX degradation, and better removal values were obtained at a pH equal to 4. The optimum operating conditions for complete degradation in a solution containing 500 mg/L of SMX, TiO2 0.5 mg/L irradiation time of 420 min, and pH 4. Under these conditions, Chemical Oxygen Demand (COD) removal was 62.6% at a temperature of 25 ℃. The effect of temperature was studied at three temperatures (25, 40, and 60 ℃) with pH 4. The elevation of temperature increased the COD removal rate to 99.62% at 60 ℃. Finally, the results of the reaction kinetics study showed that a first-order kinetics model described organic contamination removal data over time, and the obtained activation energy was 42.195 kJ/mol.\",\"PeriodicalId\":14665,\"journal\":{\"name\":\"Iraqi Journal of Industrial Research\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Industrial Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53523/ijoirvol10i1id314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Industrial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53523/ijoirvol10i1id314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水生介质中的某些药物会造成严重的环境风险。磺胺甲恶唑(SMX)是磺胺类药物中的一员。光催化是一种很有前途的将有机污染物降解为环境友好物质的技术。本研究考察了紫外/TiO2光催化工艺的操作条件(pH、时间和温度)对水溶液中SMX降解的影响。降低pH值有利于SMX的降解,当pH = 4时,SMX的去除率较好。在SMX浓度为500 mg/L、TiO2浓度为0.5 mg/L、辐照时间为420 min、pH为4的条件下,实现完全降解的最佳操作条件。在此条件下,在25℃下,化学需氧量(COD)去除率为62.6%。在pH为4的3种温度(25、40和60℃)下研究了温度的影响。温度的升高使COD去除率在60℃时达到99.62%。反应动力学研究结果表明,一阶动力学模型描述了有机污染物随时间的去除数据,得到的活化能为42.195 kJ/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photocatalytic Degradation of Sulfamethoxazole from a Synthetic Pharmaceutical Wastewater Using Titanium Dioxide (TiO2) Powder as a Suspended Heterogeneous Catalyst
Some medications in aquatic media pose a serious environmental risk. Sulfamethoxazole (SMX) is a member of the sulfonamide group. Photocatalysis offers a promising technique to degrade organic pollutants into environmentally friendly substances. This study examined the effect of operating conditions (pH, time, and temperature) of the ultraviolet (UV)/TiO2 photocatalytic process on the degradation of SMX in an aqueous solution. Decreasing the pH value positively affects SMX degradation, and better removal values were obtained at a pH equal to 4. The optimum operating conditions for complete degradation in a solution containing 500 mg/L of SMX, TiO2 0.5 mg/L irradiation time of 420 min, and pH 4. Under these conditions, Chemical Oxygen Demand (COD) removal was 62.6% at a temperature of 25 ℃. The effect of temperature was studied at three temperatures (25, 40, and 60 ℃) with pH 4. The elevation of temperature increased the COD removal rate to 99.62% at 60 ℃. Finally, the results of the reaction kinetics study showed that a first-order kinetics model described organic contamination removal data over time, and the obtained activation energy was 42.195 kJ/mol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信