$\mathbb{R}^3$中的次二次中轴近似

Q4 Mathematics
Christian Scheffer, J. Vahrenhold
{"title":"$\\mathbb{R}^3$中的次二次中轴近似","authors":"Christian Scheffer, J. Vahrenhold","doi":"10.20382/jocg.v6i1a11","DOIUrl":null,"url":null,"abstract":"We present an algorithm that approximates the medial axis of a smooth manifold in $\\mathbb{R}^3$ which is given by a sufficiently dense point sample. The resulting, non-discrete approximation is shown to converge to the medial axis as the sampling density approaches infinity. While all previous algorithms guaranteeing convergence have a running time quadratic in the size $n$ of the point sample, we achieve a running time of at most $\\mathcal{O}(n\\log^3 n)$. While there is no subquadratic upper bound on the output complexity of previous algorithms for non-discrete medial axis approximation, the output of our algorithm is guaranteed to be of linear size.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"78 1","pages":"249-287"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subquadratic medial-axis approximation in $\\\\mathbb{R}^3$\",\"authors\":\"Christian Scheffer, J. Vahrenhold\",\"doi\":\"10.20382/jocg.v6i1a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm that approximates the medial axis of a smooth manifold in $\\\\mathbb{R}^3$ which is given by a sufficiently dense point sample. The resulting, non-discrete approximation is shown to converge to the medial axis as the sampling density approaches infinity. While all previous algorithms guaranteeing convergence have a running time quadratic in the size $n$ of the point sample, we achieve a running time of at most $\\\\mathcal{O}(n\\\\log^3 n)$. While there is no subquadratic upper bound on the output complexity of previous algorithms for non-discrete medial axis approximation, the output of our algorithm is guaranteed to be of linear size.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"78 1\",\"pages\":\"249-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v6i1a11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v6i1a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种算法来逼近$\mathbb{R}^3$中光滑流形的中轴线,该流形由一个足够密集的点样本给出。结果显示,当采样密度接近无穷大时,非离散近似收敛于中轴线。虽然以前所有保证收敛的算法的运行时间在点样本的大小$n$上都是二次的,但我们实现的运行时间最多为$\mathcal{O}(n\log^ 3n)$。对于非离散的中轴逼近,以往算法的输出复杂度没有次二次上界,但我们的算法保证了输出的线性大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subquadratic medial-axis approximation in $\mathbb{R}^3$
We present an algorithm that approximates the medial axis of a smooth manifold in $\mathbb{R}^3$ which is given by a sufficiently dense point sample. The resulting, non-discrete approximation is shown to converge to the medial axis as the sampling density approaches infinity. While all previous algorithms guaranteeing convergence have a running time quadratic in the size $n$ of the point sample, we achieve a running time of at most $\mathcal{O}(n\log^3 n)$. While there is no subquadratic upper bound on the output complexity of previous algorithms for non-discrete medial axis approximation, the output of our algorithm is guaranteed to be of linear size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信