连续朗伯形状从阴影:一个原始对偶算法

IF 1.9 3区 数学 Q2 Mathematics
Hamza Ennaji, N. Igbida, Van Thanh Nguyen
{"title":"连续朗伯形状从阴影:一个原始对偶算法","authors":"Hamza Ennaji, N. Igbida, Van Thanh Nguyen","doi":"10.1051/m2an/2022014","DOIUrl":null,"url":null,"abstract":"The continuous Lambertian shape from shading is studied using a PDE approach\n\nin terms of Hamilton–Jacobi equations. The latter will then be characterized by a maximization\n\nproblem. In this paper we show the convergence of discretization and propose to use the wellknown\n\nChambolle–Pock primal-dual algorithm to solve numerically the shape from shading\n\nproblem. The saddle-point structure of the problem makes the Chambolle–Pock algorithm\n\nsuitable to approximate solutions of the discretized problems.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous Lambertian shape from shading: a primal-dual algorithm\",\"authors\":\"Hamza Ennaji, N. Igbida, Van Thanh Nguyen\",\"doi\":\"10.1051/m2an/2022014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous Lambertian shape from shading is studied using a PDE approach\\n\\nin terms of Hamilton–Jacobi equations. The latter will then be characterized by a maximization\\n\\nproblem. In this paper we show the convergence of discretization and propose to use the wellknown\\n\\nChambolle–Pock primal-dual algorithm to solve numerically the shape from shading\\n\\nproblem. The saddle-point structure of the problem makes the Chambolle–Pock algorithm\\n\\nsuitable to approximate solutions of the discretized problems.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2022014\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

利用Hamilton-Jacobi方程的PDE方法研究了阴影的连续朗伯形状。后者将以最大化问题为特征。本文证明了离散化的收敛性,并提出了用著名的chambolle - pock原对偶算法数值求解阴影形状问题。该问题的鞍点结构使得Chambolle-Pock算法适用于离散化问题的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Lambertian shape from shading: a primal-dual algorithm
The continuous Lambertian shape from shading is studied using a PDE approach in terms of Hamilton–Jacobi equations. The latter will then be characterized by a maximization problem. In this paper we show the convergence of discretization and propose to use the wellknown Chambolle–Pock primal-dual algorithm to solve numerically the shape from shading problem. The saddle-point structure of the problem makes the Chambolle–Pock algorithm suitable to approximate solutions of the discretized problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信