非均质花岗岩的FDEM切割模拟

IF 4.2 Q2 ENERGY & FUELS
Weiji Liu , Hongxing Deng , Xiaohua Zhu , Yanxin Lv , Yunxu Luo
{"title":"非均质花岗岩的FDEM切割模拟","authors":"Weiji Liu ,&nbsp;Hongxing Deng ,&nbsp;Xiaohua Zhu ,&nbsp;Yanxin Lv ,&nbsp;Yunxu Luo","doi":"10.1016/j.petlm.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Many advanced rock breaking methods are emerged form improving the ROP in deep formation drilling in recent years, such as electric pulse rock breaking, ultrasonic rock breaking and hydraulic rock breaking. However, the traditional mechanical rock breaking is still the mainstream rock-breaking method. A detailed understanding of the rock cutting mechanism is essential to achieve high efficiency in rock breaking and to optimize the cutting parameters. This study establishes the simulation model of heterogeneous granite cut by polycrystalline diamond compact (PDC) cutter using FDEM, and the friction work factor is put forward to characterize the friction work proportion of PDC cutter in cutting process. Analysis is done on the variations in friction work factor, force, and failure mechanism of granite under different cutting depths. The results show that the three-dimensional force increase gradually with the increase of cutting depth. When the cutting depth is shallow, the tensile (Type I) failure is dominated, ductile failure mainly occurs to granite and the size of chips is small. When the cutting depth is deep, the proportion of tensile failure is low, the internal shear crack of granite gradually dominates, the failure mode of granite gradually changes to brittle failure, the chips gradually become larger. Friction work factor and failure factor can visualize the change of friction energy consumption of PDC cutter in rock cutting and the failure mode of rock. This study leads to an enhanced understanding of rock breaking mechanisms in rock cutting, and provides the basis to improve the PDC bit design.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"11 1","pages":"Pages 1-12"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The rock cutting simulation of heterogeneous granite using FDEM method\",\"authors\":\"Weiji Liu ,&nbsp;Hongxing Deng ,&nbsp;Xiaohua Zhu ,&nbsp;Yanxin Lv ,&nbsp;Yunxu Luo\",\"doi\":\"10.1016/j.petlm.2023.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many advanced rock breaking methods are emerged form improving the ROP in deep formation drilling in recent years, such as electric pulse rock breaking, ultrasonic rock breaking and hydraulic rock breaking. However, the traditional mechanical rock breaking is still the mainstream rock-breaking method. A detailed understanding of the rock cutting mechanism is essential to achieve high efficiency in rock breaking and to optimize the cutting parameters. This study establishes the simulation model of heterogeneous granite cut by polycrystalline diamond compact (PDC) cutter using FDEM, and the friction work factor is put forward to characterize the friction work proportion of PDC cutter in cutting process. Analysis is done on the variations in friction work factor, force, and failure mechanism of granite under different cutting depths. The results show that the three-dimensional force increase gradually with the increase of cutting depth. When the cutting depth is shallow, the tensile (Type I) failure is dominated, ductile failure mainly occurs to granite and the size of chips is small. When the cutting depth is deep, the proportion of tensile failure is low, the internal shear crack of granite gradually dominates, the failure mode of granite gradually changes to brittle failure, the chips gradually become larger. Friction work factor and failure factor can visualize the change of friction energy consumption of PDC cutter in rock cutting and the failure mode of rock. This study leads to an enhanced understanding of rock breaking mechanisms in rock cutting, and provides the basis to improve the PDC bit design.</div></div>\",\"PeriodicalId\":37433,\"journal\":{\"name\":\"Petroleum\",\"volume\":\"11 1\",\"pages\":\"Pages 1-12\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405656123000214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656123000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The rock cutting simulation of heterogeneous granite using FDEM method
Many advanced rock breaking methods are emerged form improving the ROP in deep formation drilling in recent years, such as electric pulse rock breaking, ultrasonic rock breaking and hydraulic rock breaking. However, the traditional mechanical rock breaking is still the mainstream rock-breaking method. A detailed understanding of the rock cutting mechanism is essential to achieve high efficiency in rock breaking and to optimize the cutting parameters. This study establishes the simulation model of heterogeneous granite cut by polycrystalline diamond compact (PDC) cutter using FDEM, and the friction work factor is put forward to characterize the friction work proportion of PDC cutter in cutting process. Analysis is done on the variations in friction work factor, force, and failure mechanism of granite under different cutting depths. The results show that the three-dimensional force increase gradually with the increase of cutting depth. When the cutting depth is shallow, the tensile (Type I) failure is dominated, ductile failure mainly occurs to granite and the size of chips is small. When the cutting depth is deep, the proportion of tensile failure is low, the internal shear crack of granite gradually dominates, the failure mode of granite gradually changes to brittle failure, the chips gradually become larger. Friction work factor and failure factor can visualize the change of friction energy consumption of PDC cutter in rock cutting and the failure mode of rock. This study leads to an enhanced understanding of rock breaking mechanisms in rock cutting, and provides the basis to improve the PDC bit design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信