人类肝脏非实质细胞的重编程:一步一步的程序

Q2 Biochemistry, Genetics and Molecular Biology
Varvara A. Kirchner, Kirk Twaroski, Kelli Wysoglad, Jenna Algoo, Edward L. LeCluyse, Gi-Won Song, Eunyoung Tak, Weili Chen, Sung-Gyu Lee, Timothy L. Pruett, Jakub Tolar
{"title":"人类肝脏非实质细胞的重编程:一步一步的程序","authors":"Varvara A. Kirchner,&nbsp;Kirk Twaroski,&nbsp;Kelli Wysoglad,&nbsp;Jenna Algoo,&nbsp;Edward L. LeCluyse,&nbsp;Gi-Won Song,&nbsp;Eunyoung Tak,&nbsp;Weili Chen,&nbsp;Sung-Gyu Lee,&nbsp;Timothy L. Pruett,&nbsp;Jakub Tolar","doi":"10.1002/cpsc.112","DOIUrl":null,"url":null,"abstract":"<p>Human induced pluripotent stem cells (h-iPSCs) represent a potentially unlimited source for the generation of human hepatocyte-like cells (h-iHLCs) for the establishment of platforms to study drug-induced hepatotoxicity, liver disease modeling, and ultimately the application of h-iHLCs in treatment of patients with end-stage liver disease. To understand the impact of donor-specific factors on the generation of h-iHLCs, the model for the direct comparison of h-iHLCs and primary human hepatocytes (PHHs) from the same human donor is needed. This study proposes a step-by-step protocol for plating, expansion, and characterization of primary human hepatic non-parenchymal cells (h-NPCs) isolated from the human liver, the reprogramming of generated h-NPCs into h-iPSCs and subsequent differentiation of reprogrammed h-iPSCs into h-iHLCs. The ultimate goal is to compare the gene expression involved in hepatocyte metabolism between h-iHLCs and PHHs from the same human donor thus eliminating interdonor variability. This newly developed protocol of h-NPC culture, expansion, and reprogramming into h-iPSCs allows: (1) utilization of a single organ source (i.e., liver) for isolation of PHHs and h-NPCs and (2) the in-depth study of donor factors involved in the generation of h-iHLCs with direct comparison to PHHs from the same donor. © 2020 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Plating and expansion of human hepatic NPCs in culture</p><p><b>Basic Protocol 2</b>: Reprogramming of h-NPCs to h-NPC-derived induced pluripotent stem cells (h-iPSCs)</p><p><b>Basic Protocol 3</b>: Culture, passaging, and freezing of h-iPSCs</p><p><b>Support Protocol 1</b>: Confirmation of h-NPC ability to uptake Sendai virus: GFP-Sendai infection</p><p><b>Support Protocol 2</b>: Characterization of h-NPCs amenable to transduction with Sendai particles</p><p><b>Support Protocol 3</b>: Characterization of h-iPSCs: Clearance of viral reprogramming vectors</p><p><b>Support Protocol 4</b>: Preparation of Matrigel-coated plates</p>","PeriodicalId":53703,"journal":{"name":"Current Protocols in Stem Cell Biology","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpsc.112","citationCount":"0","resultStr":"{\"title\":\"Reprogramming of Human Hepatic Non-Parenchymal Cells: Step-by-Step Protocol\",\"authors\":\"Varvara A. Kirchner,&nbsp;Kirk Twaroski,&nbsp;Kelli Wysoglad,&nbsp;Jenna Algoo,&nbsp;Edward L. LeCluyse,&nbsp;Gi-Won Song,&nbsp;Eunyoung Tak,&nbsp;Weili Chen,&nbsp;Sung-Gyu Lee,&nbsp;Timothy L. Pruett,&nbsp;Jakub Tolar\",\"doi\":\"10.1002/cpsc.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human induced pluripotent stem cells (h-iPSCs) represent a potentially unlimited source for the generation of human hepatocyte-like cells (h-iHLCs) for the establishment of platforms to study drug-induced hepatotoxicity, liver disease modeling, and ultimately the application of h-iHLCs in treatment of patients with end-stage liver disease. To understand the impact of donor-specific factors on the generation of h-iHLCs, the model for the direct comparison of h-iHLCs and primary human hepatocytes (PHHs) from the same human donor is needed. This study proposes a step-by-step protocol for plating, expansion, and characterization of primary human hepatic non-parenchymal cells (h-NPCs) isolated from the human liver, the reprogramming of generated h-NPCs into h-iPSCs and subsequent differentiation of reprogrammed h-iPSCs into h-iHLCs. The ultimate goal is to compare the gene expression involved in hepatocyte metabolism between h-iHLCs and PHHs from the same human donor thus eliminating interdonor variability. This newly developed protocol of h-NPC culture, expansion, and reprogramming into h-iPSCs allows: (1) utilization of a single organ source (i.e., liver) for isolation of PHHs and h-NPCs and (2) the in-depth study of donor factors involved in the generation of h-iHLCs with direct comparison to PHHs from the same donor. © 2020 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: Plating and expansion of human hepatic NPCs in culture</p><p><b>Basic Protocol 2</b>: Reprogramming of h-NPCs to h-NPC-derived induced pluripotent stem cells (h-iPSCs)</p><p><b>Basic Protocol 3</b>: Culture, passaging, and freezing of h-iPSCs</p><p><b>Support Protocol 1</b>: Confirmation of h-NPC ability to uptake Sendai virus: GFP-Sendai infection</p><p><b>Support Protocol 2</b>: Characterization of h-NPCs amenable to transduction with Sendai particles</p><p><b>Support Protocol 3</b>: Characterization of h-iPSCs: Clearance of viral reprogramming vectors</p><p><b>Support Protocol 4</b>: Preparation of Matrigel-coated plates</p>\",\"PeriodicalId\":53703,\"journal\":{\"name\":\"Current Protocols in Stem Cell Biology\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpsc.112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Stem Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Stem Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpsc.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

人诱导多能干细胞(h-iPSCs)是产生人肝细胞样细胞(h-iHLCs)的潜在无限来源,可用于建立研究药物性肝毒性、肝脏疾病建模的平台,并最终应用h-iHLCs治疗终末期肝病患者。为了了解供者特异性因素对h-iHLCs生成的影响,需要建立h-iHLCs与来自同一供者的原代人肝细胞(PHHs)直接比较的模型。本研究提出了从人肝脏分离的原代人肝脏非实质细胞(h-NPCs)的电镀、扩增和表征的逐步方案,生成的h-NPCs重编程为h-iPSCs,随后将重编程的h-iPSCs分化为h-iHLCs。最终目的是比较来自同一人类供体的h-iHLCs和phh之间参与肝细胞代谢的基因表达,从而消除供体间的差异。这种新开发的h-NPC培养、扩增和重编程成h-iPSCs的方案允许:(1)利用单一器官来源(即肝脏)分离PHHs和h-NPC;(2)深入研究与h-iHLCs产生相关的供体因素,并与来自同一供体的PHHs直接比较。©2020 Wiley期刊有限责任公司基本方案1:培养中人肝npc的沉积和扩增基本方案2:将h-NPC重编程为h-NPC衍生的诱导多能干细胞(h-iPSCs)基本方案3:h-iPSCs的培养,传代和冷冻支持方案1:确认h-NPC吸收仙台病毒的能力:gfp -仙台感染支持方案2:表征可与仙台颗粒转导的h-NPC支持方案3:表征h-iPSCs:清除病毒重编程载体支持方案4:制备基质涂层板
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reprogramming of Human Hepatic Non-Parenchymal Cells: Step-by-Step Protocol

Human induced pluripotent stem cells (h-iPSCs) represent a potentially unlimited source for the generation of human hepatocyte-like cells (h-iHLCs) for the establishment of platforms to study drug-induced hepatotoxicity, liver disease modeling, and ultimately the application of h-iHLCs in treatment of patients with end-stage liver disease. To understand the impact of donor-specific factors on the generation of h-iHLCs, the model for the direct comparison of h-iHLCs and primary human hepatocytes (PHHs) from the same human donor is needed. This study proposes a step-by-step protocol for plating, expansion, and characterization of primary human hepatic non-parenchymal cells (h-NPCs) isolated from the human liver, the reprogramming of generated h-NPCs into h-iPSCs and subsequent differentiation of reprogrammed h-iPSCs into h-iHLCs. The ultimate goal is to compare the gene expression involved in hepatocyte metabolism between h-iHLCs and PHHs from the same human donor thus eliminating interdonor variability. This newly developed protocol of h-NPC culture, expansion, and reprogramming into h-iPSCs allows: (1) utilization of a single organ source (i.e., liver) for isolation of PHHs and h-NPCs and (2) the in-depth study of donor factors involved in the generation of h-iHLCs with direct comparison to PHHs from the same donor. © 2020 Wiley Periodicals LLC.

Basic Protocol 1: Plating and expansion of human hepatic NPCs in culture

Basic Protocol 2: Reprogramming of h-NPCs to h-NPC-derived induced pluripotent stem cells (h-iPSCs)

Basic Protocol 3: Culture, passaging, and freezing of h-iPSCs

Support Protocol 1: Confirmation of h-NPC ability to uptake Sendai virus: GFP-Sendai infection

Support Protocol 2: Characterization of h-NPCs amenable to transduction with Sendai particles

Support Protocol 3: Characterization of h-iPSCs: Clearance of viral reprogramming vectors

Support Protocol 4: Preparation of Matrigel-coated plates

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Stem Cell Biology
Current Protocols in Stem Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
0.00%
发文量
0
期刊介绍: Published in affiliation with the International Society for Stem Cell Research (ISSCR), Current Protocols in Stem Cell Biology (CPSC) covers the most fundamental protocols and methods in the rapidly growing field of stem cell biology. Updated monthly, CPSC will constantly evolve with thelatest developments and breakthroughs in the field. Drawing on the expertise of leading researchers from around the world, Current Protocols in Stem Cell Biology includes methods and insights that will enhance the progress of global research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信