虚拟水平度的枚举性

Carl Lian, R. Pandharipande
{"title":"虚拟水平度的枚举性","authors":"Carl Lian, R. Pandharipande","doi":"10.2422/2036-2145.202101_001","DOIUrl":null,"url":null,"abstract":"Tevelev degrees in Gromov-Witten theory are defined whenever there are virtually a finite number of genus $g$ maps of fixed complex structure in a given curve class $\\beta$ through $n$ general points of a target variety $X$. These virtual Tevelev degrees often have much simpler structure than general Gromov-Witten invariants. We explore here the question of the enumerativity of such counts in the asymptotic range for large curve class $\\beta$. A simple speculation is that for all Fano $X$, the virtual Tevelev degrees are enumerative for sufficiently large $\\beta$. We prove the claim for all homogeneous varieties and all hypersurfaces of sufficiently low degree (compared to dimension). As an application, we prove a new result on the existence of very free curves of low degree on hypersurfaces in positive characteristic.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Enumerativity of virtual Tevelev degrees\",\"authors\":\"Carl Lian, R. Pandharipande\",\"doi\":\"10.2422/2036-2145.202101_001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tevelev degrees in Gromov-Witten theory are defined whenever there are virtually a finite number of genus $g$ maps of fixed complex structure in a given curve class $\\\\beta$ through $n$ general points of a target variety $X$. These virtual Tevelev degrees often have much simpler structure than general Gromov-Witten invariants. We explore here the question of the enumerativity of such counts in the asymptotic range for large curve class $\\\\beta$. A simple speculation is that for all Fano $X$, the virtual Tevelev degrees are enumerative for sufficiently large $\\\\beta$. We prove the claim for all homogeneous varieties and all hypersurfaces of sufficiently low degree (compared to dimension). As an application, we prove a new result on the existence of very free curves of low degree on hypersurfaces in positive characteristic.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202101_001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202101_001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Gromov-Witten理论中的Tevelev度是在给定的曲线类$\beta$到$n$目标变种$X$的一般点上存在有限数目的固定复杂结构的$g$映射时定义的。这些虚水平度的结构通常比一般的Gromov-Witten不变量简单得多。本文研究了大曲线类$\beta$在渐近范围内计数的枚举性问题。一个简单的推测是,对于所有的Fano $X$,对于足够大的$\beta$,虚拟的Tevelev度是枚举的。我们证明了所有齐次变量和所有足够低次(相对于维数)的超曲面的声明。作为应用,证明了超曲面上具有正特征的低次极自由曲线的存在性的一个新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumerativity of virtual Tevelev degrees
Tevelev degrees in Gromov-Witten theory are defined whenever there are virtually a finite number of genus $g$ maps of fixed complex structure in a given curve class $\beta$ through $n$ general points of a target variety $X$. These virtual Tevelev degrees often have much simpler structure than general Gromov-Witten invariants. We explore here the question of the enumerativity of such counts in the asymptotic range for large curve class $\beta$. A simple speculation is that for all Fano $X$, the virtual Tevelev degrees are enumerative for sufficiently large $\beta$. We prove the claim for all homogeneous varieties and all hypersurfaces of sufficiently low degree (compared to dimension). As an application, we prove a new result on the existence of very free curves of low degree on hypersurfaces in positive characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信