{"title":"氢键对结构参数的影响","authors":"Tor Otterson, Svein Sæbø, Hans-Jørgen Talberg","doi":"10.1016/0001-8716(76)80006-5","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of changing the ∠ CO … H on the energy of the linear hydrogen bond has been studied by ab initio calculations for one formamide-methane complex and two formamide-water complexes, which differ in the position of the second hydrogen (H2<sub>0</sub>) of the water molecule (i.e. the one not involved in the hydrogen bond). When the hydrogen bond is <em>cis</em> to the CN bond (∠ CO … H 120°), this hydrogen is, respectively, <em>trans</em> (1) and <em>cis</em> (II) to the CO bond. It is found that the formamide-methane complex has two minima with hydrogen bond energies of ∼; −2.6 kcal mol<sup>−1</sup>, at values of about 120° and 240° for the ∠ CO … H. The barrier height at 180° is ∼; 0.9 kcal mol<sup>−1</sup>. A different situation is found for the formamide-water complexes, where the hydrogen bond energy is largely dependent on the position of H2<sub>0</sub>. The formamide-water (I) complex has one minimum of −10.74 kcal mol<sup>−1</sup> for the hydrogen bond at a value of ∼; 110° for ∠ CO … H. The energy rises sharply with changes in the angle, and is −7.54 kcal mol<sup>−1</sup> at 180°. The other complex (II) has one minimum of −9.14 kcal mol<sup>−1</sup> at 240° and a hydrogen bond energy of − 7.12 kcal mol<sup>−1</sup> at 180°. It is also found that the hydrogen bond length increases in a regular manner when ∠ CO … H changes from 120° to 240°.</p></div>","PeriodicalId":100050,"journal":{"name":"Advances in Molecular Relaxation Processes","volume":"8 1","pages":"Pages 43-48"},"PeriodicalIF":0.0000,"publicationDate":"1976-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0001-8716(76)80006-5","citationCount":"3","resultStr":"{\"title\":\"The effect of hydrogen bonding on structural parameters\",\"authors\":\"Tor Otterson, Svein Sæbø, Hans-Jørgen Talberg\",\"doi\":\"10.1016/0001-8716(76)80006-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of changing the ∠ CO … H on the energy of the linear hydrogen bond has been studied by ab initio calculations for one formamide-methane complex and two formamide-water complexes, which differ in the position of the second hydrogen (H2<sub>0</sub>) of the water molecule (i.e. the one not involved in the hydrogen bond). When the hydrogen bond is <em>cis</em> to the CN bond (∠ CO … H 120°), this hydrogen is, respectively, <em>trans</em> (1) and <em>cis</em> (II) to the CO bond. It is found that the formamide-methane complex has two minima with hydrogen bond energies of ∼; −2.6 kcal mol<sup>−1</sup>, at values of about 120° and 240° for the ∠ CO … H. The barrier height at 180° is ∼; 0.9 kcal mol<sup>−1</sup>. A different situation is found for the formamide-water complexes, where the hydrogen bond energy is largely dependent on the position of H2<sub>0</sub>. The formamide-water (I) complex has one minimum of −10.74 kcal mol<sup>−1</sup> for the hydrogen bond at a value of ∼; 110° for ∠ CO … H. The energy rises sharply with changes in the angle, and is −7.54 kcal mol<sup>−1</sup> at 180°. The other complex (II) has one minimum of −9.14 kcal mol<sup>−1</sup> at 240° and a hydrogen bond energy of − 7.12 kcal mol<sup>−1</sup> at 180°. It is also found that the hydrogen bond length increases in a regular manner when ∠ CO … H changes from 120° to 240°.</p></div>\",\"PeriodicalId\":100050,\"journal\":{\"name\":\"Advances in Molecular Relaxation Processes\",\"volume\":\"8 1\",\"pages\":\"Pages 43-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0001-8716(76)80006-5\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Molecular Relaxation Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0001871676800065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Molecular Relaxation Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0001871676800065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of hydrogen bonding on structural parameters
The effect of changing the ∠ CO … H on the energy of the linear hydrogen bond has been studied by ab initio calculations for one formamide-methane complex and two formamide-water complexes, which differ in the position of the second hydrogen (H20) of the water molecule (i.e. the one not involved in the hydrogen bond). When the hydrogen bond is cis to the CN bond (∠ CO … H 120°), this hydrogen is, respectively, trans (1) and cis (II) to the CO bond. It is found that the formamide-methane complex has two minima with hydrogen bond energies of ∼; −2.6 kcal mol−1, at values of about 120° and 240° for the ∠ CO … H. The barrier height at 180° is ∼; 0.9 kcal mol−1. A different situation is found for the formamide-water complexes, where the hydrogen bond energy is largely dependent on the position of H20. The formamide-water (I) complex has one minimum of −10.74 kcal mol−1 for the hydrogen bond at a value of ∼; 110° for ∠ CO … H. The energy rises sharply with changes in the angle, and is −7.54 kcal mol−1 at 180°. The other complex (II) has one minimum of −9.14 kcal mol−1 at 240° and a hydrogen bond energy of − 7.12 kcal mol−1 at 180°. It is also found that the hydrogen bond length increases in a regular manner when ∠ CO … H changes from 120° to 240°.