沃瑟斯坦蓝噪声采样

Hongxing Qin, Yi Chen, Jinlong He, Baoquan Chen
{"title":"沃瑟斯坦蓝噪声采样","authors":"Hongxing Qin, Yi Chen, Jinlong He, Baoquan Chen","doi":"10.1145/3072959.3126841","DOIUrl":null,"url":null,"abstract":"In this article, we present a multi-class blue noise sampling algorithm by throwing samples as the constrained Wasserstein barycenter of multiple density distributions. Using an entropic regularization term, a constrained transport plan in the optimal transport problem is provided to break the partition required by the previous Capacity-Constrained Voronoi Tessellation method. The entropic regularization term cannot only control spatial regularity of blue noise sampling, but it also reduces conflicts between the desired centroids of Vornoi cells for multi-class sampling. Moreover, the adaptive blue noise property is guaranteed for each individual class, as well as their combined class. Our method can be easily extended to multi-class sampling on a point set surface. We also demonstrate applications in object distribution and color stippling.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Wasserstein blue noise sampling\",\"authors\":\"Hongxing Qin, Yi Chen, Jinlong He, Baoquan Chen\",\"doi\":\"10.1145/3072959.3126841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a multi-class blue noise sampling algorithm by throwing samples as the constrained Wasserstein barycenter of multiple density distributions. Using an entropic regularization term, a constrained transport plan in the optimal transport problem is provided to break the partition required by the previous Capacity-Constrained Voronoi Tessellation method. The entropic regularization term cannot only control spatial regularity of blue noise sampling, but it also reduces conflicts between the desired centroids of Vornoi cells for multi-class sampling. Moreover, the adaptive blue noise property is guaranteed for each individual class, as well as their combined class. Our method can be easily extended to multi-class sampling on a point set surface. We also demonstrate applications in object distribution and color stippling.\",\"PeriodicalId\":7121,\"journal\":{\"name\":\"ACM Trans. Graph.\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Graph.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3072959.3126841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3072959.3126841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

本文提出了一种多类蓝噪声采样算法,将样本作为多个密度分布的约束Wasserstein质心。利用熵正则化项,给出了最优运输问题中的约束运输计划,打破了先前的容量约束Voronoi镶嵌法所要求的划分。熵正则化项不仅可以控制蓝噪声采样的空间正则性,还可以减少多类采样中Vornoi单元期望质心之间的冲突。此外,保证了每个单独类别及其组合类别的自适应蓝噪声特性。该方法可以很容易地扩展到点集表面上的多类采样。我们还演示了在对象分布和颜色点画中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wasserstein blue noise sampling
In this article, we present a multi-class blue noise sampling algorithm by throwing samples as the constrained Wasserstein barycenter of multiple density distributions. Using an entropic regularization term, a constrained transport plan in the optimal transport problem is provided to break the partition required by the previous Capacity-Constrained Voronoi Tessellation method. The entropic regularization term cannot only control spatial regularity of blue noise sampling, but it also reduces conflicts between the desired centroids of Vornoi cells for multi-class sampling. Moreover, the adaptive blue noise property is guaranteed for each individual class, as well as their combined class. Our method can be easily extended to multi-class sampling on a point set surface. We also demonstrate applications in object distribution and color stippling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信