数学物理中求解非线性时空分数阶微分方程的exp -函数方法

Ozkan Guner , Ahmet Bekir
{"title":"数学物理中求解非线性时空分数阶微分方程的exp -函数方法","authors":"Ozkan Guner ,&nbsp;Ahmet Bekir","doi":"10.1016/j.jaubas.2016.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Using the Exp-function method, we derive exact solutions of the nonlinear space–time fractional Telegraph equation and space–time fractional KPP equation. As a result, we obtain many exact analytical solutions including hyperbolic function. The fractional derivative is described in Jumarie’s modified Riemann–Liouville sense. This method is very effective and convenient for solving nonlinear fractional differential equations.</p></div>","PeriodicalId":17232,"journal":{"name":"Journal of the Association of Arab Universities for Basic and Applied Sciences","volume":"24 ","pages":"Pages 277-282"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jaubas.2016.12.002","citationCount":"28","resultStr":"{\"title\":\"The Exp-function method for solving nonlinear space–time fractional differential equations in mathematical physics\",\"authors\":\"Ozkan Guner ,&nbsp;Ahmet Bekir\",\"doi\":\"10.1016/j.jaubas.2016.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the Exp-function method, we derive exact solutions of the nonlinear space–time fractional Telegraph equation and space–time fractional KPP equation. As a result, we obtain many exact analytical solutions including hyperbolic function. The fractional derivative is described in Jumarie’s modified Riemann–Liouville sense. This method is very effective and convenient for solving nonlinear fractional differential equations.</p></div>\",\"PeriodicalId\":17232,\"journal\":{\"name\":\"Journal of the Association of Arab Universities for Basic and Applied Sciences\",\"volume\":\"24 \",\"pages\":\"Pages 277-282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jaubas.2016.12.002\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Association of Arab Universities for Basic and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1815385216300451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Arab Universities for Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1815385216300451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

利用exp -函数方法,导出了非线性时空分数阶电报方程和时空分数阶KPP方程的精确解。结果,我们得到了包括双曲函数在内的许多精确解析解。分数阶导数用Jumarie改进的Riemann-Liouville意义来描述。这种方法对于求解非线性分数阶微分方程是非常有效和方便的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Exp-function method for solving nonlinear space–time fractional differential equations in mathematical physics

Using the Exp-function method, we derive exact solutions of the nonlinear space–time fractional Telegraph equation and space–time fractional KPP equation. As a result, we obtain many exact analytical solutions including hyperbolic function. The fractional derivative is described in Jumarie’s modified Riemann–Liouville sense. This method is very effective and convenient for solving nonlinear fractional differential equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信