{"title":"一般细分方案相关的多分辨率分析的构建","authors":"Zhiqing Kui, J. Baccou, J. Liandrat","doi":"10.1090/MCOM/3646","DOIUrl":null,"url":null,"abstract":"Subdivision schemes are widely used in numerical mathematics such as signal/image approximation, analysis and control of data or numerical analysis. However, to develop their full power, subdivision schemes should be incorporated into a multiresolution analysis that, mimicking wavelet analyses, provides a multi-scale decomposition of a function, a curve, or a surface. The ingredients needed to define a multiresolution analysis associated to a subdivision scheme are a decimation scheme and detail operators. Their construction is not straightforward as soon as the subdivision scheme is non-interpolatory.\n\nThis paper is devoted to the construction of decimation schemes and detail operators compatible with general subdivision schemes, including non-linear ones. Analysis of the performances of the constructed analyses is carried out. Some numerical applications are presented in the framework of image approximation.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"49 1","pages":"2185-2208"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the construction of multiresolution analyses associated to general subdivision schemes\",\"authors\":\"Zhiqing Kui, J. Baccou, J. Liandrat\",\"doi\":\"10.1090/MCOM/3646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subdivision schemes are widely used in numerical mathematics such as signal/image approximation, analysis and control of data or numerical analysis. However, to develop their full power, subdivision schemes should be incorporated into a multiresolution analysis that, mimicking wavelet analyses, provides a multi-scale decomposition of a function, a curve, or a surface. The ingredients needed to define a multiresolution analysis associated to a subdivision scheme are a decimation scheme and detail operators. Their construction is not straightforward as soon as the subdivision scheme is non-interpolatory.\\n\\nThis paper is devoted to the construction of decimation schemes and detail operators compatible with general subdivision schemes, including non-linear ones. Analysis of the performances of the constructed analyses is carried out. Some numerical applications are presented in the framework of image approximation.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"49 1\",\"pages\":\"2185-2208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the construction of multiresolution analyses associated to general subdivision schemes
Subdivision schemes are widely used in numerical mathematics such as signal/image approximation, analysis and control of data or numerical analysis. However, to develop their full power, subdivision schemes should be incorporated into a multiresolution analysis that, mimicking wavelet analyses, provides a multi-scale decomposition of a function, a curve, or a surface. The ingredients needed to define a multiresolution analysis associated to a subdivision scheme are a decimation scheme and detail operators. Their construction is not straightforward as soon as the subdivision scheme is non-interpolatory.
This paper is devoted to the construction of decimation schemes and detail operators compatible with general subdivision schemes, including non-linear ones. Analysis of the performances of the constructed analyses is carried out. Some numerical applications are presented in the framework of image approximation.