为物联网安全设计伽罗瓦扩展域的分组密码

Kiernan B. George, Alan J. Michaels
{"title":"为物联网安全设计伽罗瓦扩展域的分组密码","authors":"Kiernan B. George, Alan J. Michaels","doi":"10.3390/iot2040034","DOIUrl":null,"url":null,"abstract":"This paper focuses on a block cipher adaptation of the Galois Extension Fields (GEF) combination technique for PRNGs and targets application in the Internet of Things (IoT) space, an area where the combination technique was concluded as a quality stream cipher. Electronic Codebook (ECB) and Cipher Feedback (CFB) variations of the cryptographic algorithm are discussed. Both modes offer computationally efficient, scalable cryptographic algorithms for use over a simple combination technique like XOR. The cryptographic algorithm relies on the use of quality PRNGs, but adds an additional layer of security while preserving maximal entropy and near-uniform distributions. The use of matrices with entries drawn from a Galois field extends this technique to block size chunks of plaintext, increasing diffusion, while only requiring linear operations that are quick to perform. The process of calculating the inverse differs only in using the modular inverse of the determinant, but this can be expedited by a look-up table. We validate this GEF block cipher with the NIST test suite. Additional statistical tests indicate the condensed plaintext results in a near-uniform distributed ciphertext across the entire field. The block cipher implemented on an MSP430 offers a faster, more power-efficient alternative to the Advanced Encryption Standard (AES) system. This cryptosystem is a secure, scalable option for IoT devices that must be mindful of time and power consumption.","PeriodicalId":6745,"journal":{"name":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","volume":"02 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Designing a Block Cipher in Galois Extension Fields for IoT Security\",\"authors\":\"Kiernan B. George, Alan J. Michaels\",\"doi\":\"10.3390/iot2040034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on a block cipher adaptation of the Galois Extension Fields (GEF) combination technique for PRNGs and targets application in the Internet of Things (IoT) space, an area where the combination technique was concluded as a quality stream cipher. Electronic Codebook (ECB) and Cipher Feedback (CFB) variations of the cryptographic algorithm are discussed. Both modes offer computationally efficient, scalable cryptographic algorithms for use over a simple combination technique like XOR. The cryptographic algorithm relies on the use of quality PRNGs, but adds an additional layer of security while preserving maximal entropy and near-uniform distributions. The use of matrices with entries drawn from a Galois field extends this technique to block size chunks of plaintext, increasing diffusion, while only requiring linear operations that are quick to perform. The process of calculating the inverse differs only in using the modular inverse of the determinant, but this can be expedited by a look-up table. We validate this GEF block cipher with the NIST test suite. Additional statistical tests indicate the condensed plaintext results in a near-uniform distributed ciphertext across the entire field. The block cipher implemented on an MSP430 offers a faster, more power-efficient alternative to the Advanced Encryption Standard (AES) system. This cryptosystem is a secure, scalable option for IoT devices that must be mindful of time and power consumption.\",\"PeriodicalId\":6745,\"journal\":{\"name\":\"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)\",\"volume\":\"02 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iot2040034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iot2040034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文重点研究了一种基于伽罗瓦扩展域(GEF)组合技术的分组密码,用于prng和目标在物联网(IoT)领域的应用,该组合技术在物联网(IoT)领域被认为是一种高质量的流密码。讨论了密码算法的电子码本(ECB)和密码反馈(CFB)变体。这两种模式都提供了计算效率高、可扩展的加密算法,可用于像异或这样的简单组合技术。该加密算法依赖于使用高质量的prng,但在保持最大熵和接近均匀分布的同时增加了额外的安全层。使用带有从伽罗瓦字段绘制的条目的矩阵将这种技术扩展到明文块大小的块,增加了扩散,同时只需要快速执行的线性操作。计算逆的过程只不同于使用行列式的模逆,但这可以通过查找表加快。我们使用NIST测试套件验证这个GEF分组密码。额外的统计测试表明,压缩的明文在整个字段中产生了近乎均匀的分布式密文。在MSP430上实现的分组密码提供了比高级加密标准(AES)系统更快、更节能的替代方案。这种密码系统对于必须注意时间和功耗的物联网设备来说是一种安全、可扩展的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a Block Cipher in Galois Extension Fields for IoT Security
This paper focuses on a block cipher adaptation of the Galois Extension Fields (GEF) combination technique for PRNGs and targets application in the Internet of Things (IoT) space, an area where the combination technique was concluded as a quality stream cipher. Electronic Codebook (ECB) and Cipher Feedback (CFB) variations of the cryptographic algorithm are discussed. Both modes offer computationally efficient, scalable cryptographic algorithms for use over a simple combination technique like XOR. The cryptographic algorithm relies on the use of quality PRNGs, but adds an additional layer of security while preserving maximal entropy and near-uniform distributions. The use of matrices with entries drawn from a Galois field extends this technique to block size chunks of plaintext, increasing diffusion, while only requiring linear operations that are quick to perform. The process of calculating the inverse differs only in using the modular inverse of the determinant, but this can be expedited by a look-up table. We validate this GEF block cipher with the NIST test suite. Additional statistical tests indicate the condensed plaintext results in a near-uniform distributed ciphertext across the entire field. The block cipher implemented on an MSP430 offers a faster, more power-efficient alternative to the Advanced Encryption Standard (AES) system. This cryptosystem is a secure, scalable option for IoT devices that must be mindful of time and power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信