{"title":"基于AFLP标记的韩国扁桃群体遗传多样性和结构分析","authors":"Ji-young Ahn, Jei-Wan Lee, Hyo-In Lim, K. Hong","doi":"10.1080/21580103.2020.1807415","DOIUrl":null,"url":null,"abstract":"Abstract We applied seven pairs of primer-restriction enzyme combinations to investigate the genetic diversity, genetic differentiation, and genetic structure of Prunus padus populations with AFLP markers. The values obtained for average of effective alleles (A e), percentage of polymorphic loci (%P), Shannon’s diversity index (I), and expected heterozygosity (H e) were 1.38, 81.4, 0.357, and 0.223%, respectively. The expected heterozygosity (Hj) obtained by using a Bayesian method was 0.256. The level of genetic diversity obtained for P. padus was low compared to that of Prunus species and other species with a similar life history. The inbreeding coefficient (F IS) from the approximated Bayesian method was 0.767. This value was lower than that obtained for Ulmus davidiana, which undergoes both sexual and asexual reproduction. However, the value obtained was larger than that for other species that undergo sexual reproduction, such as, Carpinus laxiflora, Phellodendron amurense, and Acer pseudosieboldianum. The value of genetic differentiation was 0.245 from AMOVA (ΦST) and 0.278 from Bayesian method (θII). The obtained level of genetic differentiation was large compared to that of other Prunus species plants and other species with a similar life history. According to UPGMA and Bayesian clustering, 11 populations were divided into two genetic groups. However, some populations were detected as weak genetic structures according to the geographical distribution. It was occurred by forest succession, asexual propagation strategies to adapt local environmental change, and gene flow being gradually decreased due to population fragmentation by demographic disturbances.","PeriodicalId":51802,"journal":{"name":"Forest Science and Technology","volume":"24 1","pages":"171 - 179"},"PeriodicalIF":1.8000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genetic diversity and structure of Prunus padus populations in South Korea based on AFLP markers\",\"authors\":\"Ji-young Ahn, Jei-Wan Lee, Hyo-In Lim, K. Hong\",\"doi\":\"10.1080/21580103.2020.1807415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We applied seven pairs of primer-restriction enzyme combinations to investigate the genetic diversity, genetic differentiation, and genetic structure of Prunus padus populations with AFLP markers. The values obtained for average of effective alleles (A e), percentage of polymorphic loci (%P), Shannon’s diversity index (I), and expected heterozygosity (H e) were 1.38, 81.4, 0.357, and 0.223%, respectively. The expected heterozygosity (Hj) obtained by using a Bayesian method was 0.256. The level of genetic diversity obtained for P. padus was low compared to that of Prunus species and other species with a similar life history. The inbreeding coefficient (F IS) from the approximated Bayesian method was 0.767. This value was lower than that obtained for Ulmus davidiana, which undergoes both sexual and asexual reproduction. However, the value obtained was larger than that for other species that undergo sexual reproduction, such as, Carpinus laxiflora, Phellodendron amurense, and Acer pseudosieboldianum. The value of genetic differentiation was 0.245 from AMOVA (ΦST) and 0.278 from Bayesian method (θII). The obtained level of genetic differentiation was large compared to that of other Prunus species plants and other species with a similar life history. According to UPGMA and Bayesian clustering, 11 populations were divided into two genetic groups. However, some populations were detected as weak genetic structures according to the geographical distribution. It was occurred by forest succession, asexual propagation strategies to adapt local environmental change, and gene flow being gradually decreased due to population fragmentation by demographic disturbances.\",\"PeriodicalId\":51802,\"journal\":{\"name\":\"Forest Science and Technology\",\"volume\":\"24 1\",\"pages\":\"171 - 179\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Science and Technology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1080/21580103.2020.1807415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Science and Technology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1080/21580103.2020.1807415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Genetic diversity and structure of Prunus padus populations in South Korea based on AFLP markers
Abstract We applied seven pairs of primer-restriction enzyme combinations to investigate the genetic diversity, genetic differentiation, and genetic structure of Prunus padus populations with AFLP markers. The values obtained for average of effective alleles (A e), percentage of polymorphic loci (%P), Shannon’s diversity index (I), and expected heterozygosity (H e) were 1.38, 81.4, 0.357, and 0.223%, respectively. The expected heterozygosity (Hj) obtained by using a Bayesian method was 0.256. The level of genetic diversity obtained for P. padus was low compared to that of Prunus species and other species with a similar life history. The inbreeding coefficient (F IS) from the approximated Bayesian method was 0.767. This value was lower than that obtained for Ulmus davidiana, which undergoes both sexual and asexual reproduction. However, the value obtained was larger than that for other species that undergo sexual reproduction, such as, Carpinus laxiflora, Phellodendron amurense, and Acer pseudosieboldianum. The value of genetic differentiation was 0.245 from AMOVA (ΦST) and 0.278 from Bayesian method (θII). The obtained level of genetic differentiation was large compared to that of other Prunus species plants and other species with a similar life history. According to UPGMA and Bayesian clustering, 11 populations were divided into two genetic groups. However, some populations were detected as weak genetic structures according to the geographical distribution. It was occurred by forest succession, asexual propagation strategies to adapt local environmental change, and gene flow being gradually decreased due to population fragmentation by demographic disturbances.