自适应视觉跟踪的注意相关滤波网络

Jongwon Choi, H. Chang, Sangdoo Yun, Tobias Fischer, Y. Demiris, J. Choi
{"title":"自适应视觉跟踪的注意相关滤波网络","authors":"Jongwon Choi, H. Chang, Sangdoo Yun, Tobias Fischer, Y. Demiris, J. Choi","doi":"10.1109/CVPR.2017.513","DOIUrl":null,"url":null,"abstract":"We propose a new tracking framework with an attentional mechanism that chooses a subset of the associated correlation filters for increased robustness and computational efficiency. The subset of filters is adaptively selected by a deep attentional network according to the dynamic properties of the tracking target. Our contributions are manifold, and are summarised as follows: (i) Introducing the Attentional Correlation Filter Network which allows adaptive tracking of dynamic targets. (ii) Utilising an attentional network which shifts the attention to the best candidate modules, as well as predicting the estimated accuracy of currently inactive modules. (iii) Enlarging the variety of correlation filters which cover target drift, blurriness, occlusion, scale changes, and flexible aspect ratio. (iv) Validating the robustness and efficiency of the attentional mechanism for visual tracking through a number of experiments. Our method achieves similar performance to non real-time trackers, and state-of-the-art performance amongst real-time trackers.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"67 1","pages":"4828-4837"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"291","resultStr":"{\"title\":\"Attentional Correlation Filter Network for Adaptive Visual Tracking\",\"authors\":\"Jongwon Choi, H. Chang, Sangdoo Yun, Tobias Fischer, Y. Demiris, J. Choi\",\"doi\":\"10.1109/CVPR.2017.513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new tracking framework with an attentional mechanism that chooses a subset of the associated correlation filters for increased robustness and computational efficiency. The subset of filters is adaptively selected by a deep attentional network according to the dynamic properties of the tracking target. Our contributions are manifold, and are summarised as follows: (i) Introducing the Attentional Correlation Filter Network which allows adaptive tracking of dynamic targets. (ii) Utilising an attentional network which shifts the attention to the best candidate modules, as well as predicting the estimated accuracy of currently inactive modules. (iii) Enlarging the variety of correlation filters which cover target drift, blurriness, occlusion, scale changes, and flexible aspect ratio. (iv) Validating the robustness and efficiency of the attentional mechanism for visual tracking through a number of experiments. Our method achieves similar performance to non real-time trackers, and state-of-the-art performance amongst real-time trackers.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"67 1\",\"pages\":\"4828-4837\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"291\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 291

摘要

我们提出了一种新的跟踪框架,该框架采用注意机制,选择相关滤波器的子集,以提高鲁棒性和计算效率。根据跟踪目标的动态特性,由深度注意网络自适应选择滤波器子集。我们的贡献是多方面的,总结如下:(i)引入了允许自适应跟踪动态目标的注意相关滤波网络。(ii)利用注意力网络将注意力转移到最佳候选模块,并预测当前不活跃模块的估计精度。(iii)扩大相关滤波器的种类,涵盖目标漂移、模糊、遮挡、尺度变化和灵活的宽高比。(iv)通过一系列实验验证视觉跟踪注意机制的稳健性和效率。我们的方法实现了与非实时跟踪器相似的性能,并且在实时跟踪器中具有最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attentional Correlation Filter Network for Adaptive Visual Tracking
We propose a new tracking framework with an attentional mechanism that chooses a subset of the associated correlation filters for increased robustness and computational efficiency. The subset of filters is adaptively selected by a deep attentional network according to the dynamic properties of the tracking target. Our contributions are manifold, and are summarised as follows: (i) Introducing the Attentional Correlation Filter Network which allows adaptive tracking of dynamic targets. (ii) Utilising an attentional network which shifts the attention to the best candidate modules, as well as predicting the estimated accuracy of currently inactive modules. (iii) Enlarging the variety of correlation filters which cover target drift, blurriness, occlusion, scale changes, and flexible aspect ratio. (iv) Validating the robustness and efficiency of the attentional mechanism for visual tracking through a number of experiments. Our method achieves similar performance to non real-time trackers, and state-of-the-art performance amongst real-time trackers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信