滞流条件下旋流对气液两相垂直流动流型及液体卸载的影响

IF 0.7 Q4 THERMODYNAMICS
Wen Liu, Xiaofei Lv, B. Bai
{"title":"滞流条件下旋流对气液两相垂直流动流型及液体卸载的影响","authors":"Wen Liu, Xiaofei Lv, B. Bai","doi":"10.1615/INTERFACPHENOMHEATTRANSFER.2019030601","DOIUrl":null,"url":null,"abstract":"Liquid loading is a common problem in low-production gas wells faced in many producing regions around the world. Recently, swirl flow has been applied to remove the accumulated liquid. However, the effect of swirl on the flow characteristics in gas–liquid two-phase flow is largely unexplored, which is important for the application of swirl flow in the natural gas industry. Therefore, the effects of swirl on flow patterns and liquid unloading in gas–liquid two-phase vertical flow under stagnant conditions are investigated by visualization experiment in this work. A dimensionless parameter is proposed to quantitatively describe the capability of liquid unloading. The results show that interface morphology varies along the streamwise direction under stagnant liquid situations. In the case of slug flow, a swirler can suppress the fallback of falling liquid film. In the case of churn flow with relatively high gas velocity, the churn flow can be transformed to swirling annular flow once out of the swirler. The swirl is beneficial in unloading liquid when the gas velocity is relatively high. The critical gas velocity, which is defined as the minimum gas velocity to prevent the onset of liquid load up in the gas well, can be reduced in the swirl flow compared with that in non-swirling flow. In addition, the initial position of the liquid level has an influence on liquid unloading, and a swirler located below the initial position of the liquid level performs better in unloading liquid.","PeriodicalId":44077,"journal":{"name":"Interfacial Phenomena and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECTS OF SWIRL ON FLOW PATTERNS AND LIQUID UNLOADING OF GAS–LIQUID TWO-PHASE VERTICAL FLOW UNDER STAGNANT CONDITIONS\",\"authors\":\"Wen Liu, Xiaofei Lv, B. Bai\",\"doi\":\"10.1615/INTERFACPHENOMHEATTRANSFER.2019030601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid loading is a common problem in low-production gas wells faced in many producing regions around the world. Recently, swirl flow has been applied to remove the accumulated liquid. However, the effect of swirl on the flow characteristics in gas–liquid two-phase flow is largely unexplored, which is important for the application of swirl flow in the natural gas industry. Therefore, the effects of swirl on flow patterns and liquid unloading in gas–liquid two-phase vertical flow under stagnant conditions are investigated by visualization experiment in this work. A dimensionless parameter is proposed to quantitatively describe the capability of liquid unloading. The results show that interface morphology varies along the streamwise direction under stagnant liquid situations. In the case of slug flow, a swirler can suppress the fallback of falling liquid film. In the case of churn flow with relatively high gas velocity, the churn flow can be transformed to swirling annular flow once out of the swirler. The swirl is beneficial in unloading liquid when the gas velocity is relatively high. The critical gas velocity, which is defined as the minimum gas velocity to prevent the onset of liquid load up in the gas well, can be reduced in the swirl flow compared with that in non-swirling flow. In addition, the initial position of the liquid level has an influence on liquid unloading, and a swirler located below the initial position of the liquid level performs better in unloading liquid.\",\"PeriodicalId\":44077,\"journal\":{\"name\":\"Interfacial Phenomena and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfacial Phenomena and Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/INTERFACPHENOMHEATTRANSFER.2019030601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfacial Phenomena and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/INTERFACPHENOMHEATTRANSFER.2019030601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

注液是世界上许多产区低产量气井普遍面临的问题。近年来,人们开始采用旋流法去除积液。然而,旋流对气液两相流流动特性的影响在很大程度上尚未得到研究,这对于旋流在天然气工业中的应用具有重要意义。因此,本文采用可视化实验的方法,研究了涡流对停滞条件下气液两相垂直流动流型和液体卸载的影响。提出了一个无量纲参数来定量描述卸液能力。结果表明:在滞流条件下,界面形态沿流动方向发生变化;在段塞流的情况下,旋流器可以抑制下落液膜的回退。对于具有较高气速的搅拌流,搅拌流出旋流器后可转化为旋流环流。当气体流速较大时,旋流有利于卸液。临界气速,定义为防止气井中液体负荷开始上升的最小气速,在旋流中比在非旋流中可以降低。此外,液面初始位置对卸液有影响,位于液面初始位置下方的旋流器卸液效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EFFECTS OF SWIRL ON FLOW PATTERNS AND LIQUID UNLOADING OF GAS–LIQUID TWO-PHASE VERTICAL FLOW UNDER STAGNANT CONDITIONS
Liquid loading is a common problem in low-production gas wells faced in many producing regions around the world. Recently, swirl flow has been applied to remove the accumulated liquid. However, the effect of swirl on the flow characteristics in gas–liquid two-phase flow is largely unexplored, which is important for the application of swirl flow in the natural gas industry. Therefore, the effects of swirl on flow patterns and liquid unloading in gas–liquid two-phase vertical flow under stagnant conditions are investigated by visualization experiment in this work. A dimensionless parameter is proposed to quantitatively describe the capability of liquid unloading. The results show that interface morphology varies along the streamwise direction under stagnant liquid situations. In the case of slug flow, a swirler can suppress the fallback of falling liquid film. In the case of churn flow with relatively high gas velocity, the churn flow can be transformed to swirling annular flow once out of the swirler. The swirl is beneficial in unloading liquid when the gas velocity is relatively high. The critical gas velocity, which is defined as the minimum gas velocity to prevent the onset of liquid load up in the gas well, can be reduced in the swirl flow compared with that in non-swirling flow. In addition, the initial position of the liquid level has an influence on liquid unloading, and a swirler located below the initial position of the liquid level performs better in unloading liquid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
40.00%
发文量
10
期刊介绍: Interfacial Phenomena and Heat Transfer aims to serve as a forum to advance understanding of fundamental and applied areas on interfacial phenomena, fluid flow, and heat transfer through interdisciplinary research. The special feature of the Journal is to highlight multi-scale phenomena involved in physical and/or chemical behaviors in the context of both classical and new unsolved problems of thermal physics, fluid mechanics, and interfacial phenomena. This goal is fulfilled by publishing novel research on experimental, theoretical and computational methods, assigning priority to comprehensive works covering at least two of the above three approaches. The scope of the Journal covers interdisciplinary areas of physics of fluids, heat and mass transfer, physical chemistry and engineering in macro-, meso-, micro-, and nano-scale. As such review papers, full-length articles and short communications are sought on the following areas: intense heat and mass transfer systems; flows in channels and complex fluid systems; physics of contact line, wetting and thermocapillary flows; instabilities and flow patterns; two-phase systems behavior including films, drops, rivulets, spray, jets, and bubbles; phase change phenomena such as boiling, evaporation, condensation and solidification; multi-scaled textured, soft or heterogeneous surfaces; and gravity dependent phenomena, e.g. processes in micro- and hyper-gravity. The Journal may also consider significant contributions related to the development of innovative experimental techniques, and instrumentation demonstrating advancement of science in the focus areas of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信