{"title":"基于Prophet-Deep AR模型的铁路货运量分析与预测","authors":"Fan Zhao, Baotian Dong, Yuanyun Sun, Shiyao Huang","doi":"10.17559/tv-20230226000383","DOIUrl":null,"url":null,"abstract":": The research on railway freight volume forecast is of great significance to the allocation of railway freight transport resources, the formulation of transport plans and the organization of railway freight transport. This study, by fully mining the railway freight ticket data information, put forward the precise forecast model of railway freight volume under different types of freight. Firstly, the railway freight ticket data are cleaned, regulated and integrated, and the time series of the daily number of railway freight trains are constructed, get the trend, periodicity and holiday data of railway traffic data, and set the parameters of Chinese holidays and rest days according to the demand characteristics of different categories. Secondly, the forecasting result of the Prophet is taken as a cooperative parameter. DeepAR is used to forecast, and a combined model of the Prophet-DeepAR is constructed. Finally, the combined model was validated with Shanghai Railway Bureau data from January 1, 2015 to December 31, 2018 for the food and tobacco category, and with Prophet-DeepAR, LSTM, Wavelet, BILSTM, and Prophet-LSTM, prophet-wavelet and Prophet-Bilstm are used to compare the prediction results. The results show that the Prophet-DeepAR model can extract the multi-dimensional periodicity of freight traffic and mine the trend information of freight traffic, and get the prediction result with high precision. It has better accuracy than other models.","PeriodicalId":49443,"journal":{"name":"Tehnicki Vjesnik-Technical Gazette","volume":"75 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Forecast of Railway Freight Volume based on Prophet-Deep AR Model\",\"authors\":\"Fan Zhao, Baotian Dong, Yuanyun Sun, Shiyao Huang\",\"doi\":\"10.17559/tv-20230226000383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The research on railway freight volume forecast is of great significance to the allocation of railway freight transport resources, the formulation of transport plans and the organization of railway freight transport. This study, by fully mining the railway freight ticket data information, put forward the precise forecast model of railway freight volume under different types of freight. Firstly, the railway freight ticket data are cleaned, regulated and integrated, and the time series of the daily number of railway freight trains are constructed, get the trend, periodicity and holiday data of railway traffic data, and set the parameters of Chinese holidays and rest days according to the demand characteristics of different categories. Secondly, the forecasting result of the Prophet is taken as a cooperative parameter. DeepAR is used to forecast, and a combined model of the Prophet-DeepAR is constructed. Finally, the combined model was validated with Shanghai Railway Bureau data from January 1, 2015 to December 31, 2018 for the food and tobacco category, and with Prophet-DeepAR, LSTM, Wavelet, BILSTM, and Prophet-LSTM, prophet-wavelet and Prophet-Bilstm are used to compare the prediction results. The results show that the Prophet-DeepAR model can extract the multi-dimensional periodicity of freight traffic and mine the trend information of freight traffic, and get the prediction result with high precision. It has better accuracy than other models.\",\"PeriodicalId\":49443,\"journal\":{\"name\":\"Tehnicki Vjesnik-Technical Gazette\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tehnicki Vjesnik-Technical Gazette\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17559/tv-20230226000383\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki Vjesnik-Technical Gazette","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17559/tv-20230226000383","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis and Forecast of Railway Freight Volume based on Prophet-Deep AR Model
: The research on railway freight volume forecast is of great significance to the allocation of railway freight transport resources, the formulation of transport plans and the organization of railway freight transport. This study, by fully mining the railway freight ticket data information, put forward the precise forecast model of railway freight volume under different types of freight. Firstly, the railway freight ticket data are cleaned, regulated and integrated, and the time series of the daily number of railway freight trains are constructed, get the trend, periodicity and holiday data of railway traffic data, and set the parameters of Chinese holidays and rest days according to the demand characteristics of different categories. Secondly, the forecasting result of the Prophet is taken as a cooperative parameter. DeepAR is used to forecast, and a combined model of the Prophet-DeepAR is constructed. Finally, the combined model was validated with Shanghai Railway Bureau data from January 1, 2015 to December 31, 2018 for the food and tobacco category, and with Prophet-DeepAR, LSTM, Wavelet, BILSTM, and Prophet-LSTM, prophet-wavelet and Prophet-Bilstm are used to compare the prediction results. The results show that the Prophet-DeepAR model can extract the multi-dimensional periodicity of freight traffic and mine the trend information of freight traffic, and get the prediction result with high precision. It has better accuracy than other models.
期刊介绍:
The journal TEHNIČKI VJESNIK - TECHNICAL GAZETTE publishes scientific and professional papers in the area of technical sciences (mostly from mechanical, electrical and civil engineering, and also from their boundary areas).
All articles have undergone peer review and upon acceptance are permanently free of all restrictions on access, for everyone to read and download.
For all articles authors will be asked to pay a publication fee prior to the article appearing in the journal. However, this fee only to be paid after the article has been positively reviewed and accepted for publishing. All details can be seen at http://www.tehnicki-vjesnik.com/web/public/page
First year of publication: 1994
Frequency (annually): 6