基于crf的CTC拓扑单级声学建模

Hongyu Xiang, Zhijian Ou
{"title":"基于crf的CTC拓扑单级声学建模","authors":"Hongyu Xiang, Zhijian Ou","doi":"10.1109/ICASSP.2019.8682256","DOIUrl":null,"url":null,"abstract":"In this paper, we develop conditional random field (CRF) based single-stage (SS) acoustic modeling with connectionist temporal classification (CTC) inspired state topology, which is called CTC-CRF for short. CTC-CRF is conceptually simple, which basically implements a CRF layer on top of features generated by the bottom neural network with the special state topology. Like SS-LF-MMI (lattice-free maximum-mutual-information), CTC-CRFs can be trained from scratch (flat-start), eliminating GMM-HMM pre-training and tree-building. Evaluation experiments are conducted on the WSJ, Switchboard and Librispeech datasets. In a head-to-head comparison, the CTC-CRF model using simple Bidirectional LSTMs consistently outperforms the strong SS-LF-MMI, across all the three benchmarking datasets and in both cases of mono-phones and mono-chars. Additionally, CTC-CRFs avoid some ad-hoc operation in SS-LF-MMI.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"48 1","pages":"5676-5680"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"CRF-based Single-stage Acoustic Modeling with CTC Topology\",\"authors\":\"Hongyu Xiang, Zhijian Ou\",\"doi\":\"10.1109/ICASSP.2019.8682256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop conditional random field (CRF) based single-stage (SS) acoustic modeling with connectionist temporal classification (CTC) inspired state topology, which is called CTC-CRF for short. CTC-CRF is conceptually simple, which basically implements a CRF layer on top of features generated by the bottom neural network with the special state topology. Like SS-LF-MMI (lattice-free maximum-mutual-information), CTC-CRFs can be trained from scratch (flat-start), eliminating GMM-HMM pre-training and tree-building. Evaluation experiments are conducted on the WSJ, Switchboard and Librispeech datasets. In a head-to-head comparison, the CTC-CRF model using simple Bidirectional LSTMs consistently outperforms the strong SS-LF-MMI, across all the three benchmarking datasets and in both cases of mono-phones and mono-chars. Additionally, CTC-CRFs avoid some ad-hoc operation in SS-LF-MMI.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"48 1\",\"pages\":\"5676-5680\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文提出了一种基于条件随机场(CRF)的基于连接时间分类(CTC)启发状态拓扑的单级(SS)声学建模方法,简称CTC-CRF。CTC-CRF概念简单,基本上是在底层神经网络生成的具有特殊状态拓扑的特征之上实现一个CRF层。像SS-LF-MMI(无格最大互信息)一样,CTC-CRFs可以从头开始训练,消除了GMM-HMM预训练和树构建。在WSJ、Switchboard和librisspeech数据集上进行了评估实验。在正面比较中,使用简单双向lstm的CTC-CRF模型在所有三个基准数据集以及单电话和单字符的情况下始终优于强大的SS-LF-MMI。此外,CTC-CRFs避免了SS-LF-MMI中的一些特别操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CRF-based Single-stage Acoustic Modeling with CTC Topology
In this paper, we develop conditional random field (CRF) based single-stage (SS) acoustic modeling with connectionist temporal classification (CTC) inspired state topology, which is called CTC-CRF for short. CTC-CRF is conceptually simple, which basically implements a CRF layer on top of features generated by the bottom neural network with the special state topology. Like SS-LF-MMI (lattice-free maximum-mutual-information), CTC-CRFs can be trained from scratch (flat-start), eliminating GMM-HMM pre-training and tree-building. Evaluation experiments are conducted on the WSJ, Switchboard and Librispeech datasets. In a head-to-head comparison, the CTC-CRF model using simple Bidirectional LSTMs consistently outperforms the strong SS-LF-MMI, across all the three benchmarking datasets and in both cases of mono-phones and mono-chars. Additionally, CTC-CRFs avoid some ad-hoc operation in SS-LF-MMI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信