高斯不动点处的算子代数

H. Sonoda
{"title":"高斯不动点处的算子代数","authors":"H. Sonoda","doi":"10.1142/S0217751X21501062","DOIUrl":null,"url":null,"abstract":"We consider the multiple products of relevant and marginal scalar composite operators at the Gaussian fixed-point in $D=4$ dimensions. This amounts to perturbative construction of the $\\phi^4$ theory where the parameters of the theory are momentum dependent sources. Using the exact renormalization group (ERG) formalism, we show how the scaling properties of the sources are given by the short-distance singularities of the multiple products.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The operator algebra at the Gaussian fixed-point\",\"authors\":\"H. Sonoda\",\"doi\":\"10.1142/S0217751X21501062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the multiple products of relevant and marginal scalar composite operators at the Gaussian fixed-point in $D=4$ dimensions. This amounts to perturbative construction of the $\\\\phi^4$ theory where the parameters of the theory are momentum dependent sources. Using the exact renormalization group (ERG) formalism, we show how the scaling properties of the sources are given by the short-distance singularities of the multiple products.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217751X21501062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217751X21501062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑D=4维高斯不动点上相关标量复合算子和边际标量复合算子的多重积。这相当于$\phi^4$理论的微扰构造,其中理论的参数是动量依赖源。利用精确重整化群(ERG)的形式,我们证明了源的标度性质是如何由多积的短距离奇点给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The operator algebra at the Gaussian fixed-point
We consider the multiple products of relevant and marginal scalar composite operators at the Gaussian fixed-point in $D=4$ dimensions. This amounts to perturbative construction of the $\phi^4$ theory where the parameters of the theory are momentum dependent sources. Using the exact renormalization group (ERG) formalism, we show how the scaling properties of the sources are given by the short-distance singularities of the multiple products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信