{"title":"高斯不动点处的算子代数","authors":"H. Sonoda","doi":"10.1142/S0217751X21501062","DOIUrl":null,"url":null,"abstract":"We consider the multiple products of relevant and marginal scalar composite operators at the Gaussian fixed-point in $D=4$ dimensions. This amounts to perturbative construction of the $\\phi^4$ theory where the parameters of the theory are momentum dependent sources. Using the exact renormalization group (ERG) formalism, we show how the scaling properties of the sources are given by the short-distance singularities of the multiple products.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The operator algebra at the Gaussian fixed-point\",\"authors\":\"H. Sonoda\",\"doi\":\"10.1142/S0217751X21501062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the multiple products of relevant and marginal scalar composite operators at the Gaussian fixed-point in $D=4$ dimensions. This amounts to perturbative construction of the $\\\\phi^4$ theory where the parameters of the theory are momentum dependent sources. Using the exact renormalization group (ERG) formalism, we show how the scaling properties of the sources are given by the short-distance singularities of the multiple products.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217751X21501062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217751X21501062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the multiple products of relevant and marginal scalar composite operators at the Gaussian fixed-point in $D=4$ dimensions. This amounts to perturbative construction of the $\phi^4$ theory where the parameters of the theory are momentum dependent sources. Using the exact renormalization group (ERG) formalism, we show how the scaling properties of the sources are given by the short-distance singularities of the multiple products.