$T$-连接的并进分数填充

Ahmad Abdi, G. Cornuéjols, Zuzanna Palion
{"title":"$T$-连接的并进分数填充","authors":"Ahmad Abdi, G. Cornuéjols, Zuzanna Palion","doi":"10.1137/21m1445260","DOIUrl":null,"url":null,"abstract":"Let G = (V,E) be a graph, and T ⊆ V a nonempty subset of even cardinality. The famous theorem of Edmonds and Johnson on the T -join polyhedron implies that the minimum cardinality of a T -cut is equal to the maximum value of a fractional packing of T -joins. In this paper, we prove that the fractions assigned may be picked as dyadic rationals, i.e. of the form a 2k for some integers a, k ≥ 0.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Dyadic Fractional Packings of $T$-Joins\",\"authors\":\"Ahmad Abdi, G. Cornuéjols, Zuzanna Palion\",\"doi\":\"10.1137/21m1445260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G = (V,E) be a graph, and T ⊆ V a nonempty subset of even cardinality. The famous theorem of Edmonds and Johnson on the T -join polyhedron implies that the minimum cardinality of a T -cut is equal to the maximum value of a fractional packing of T -joins. In this paper, we prove that the fractions assigned may be picked as dyadic rationals, i.e. of the form a 2k for some integers a, k ≥ 0.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1445260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1445260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设G = (V,E)为一个图,T≤V为偶基数的非空子集。Edmonds和Johnson关于T连接多面体的著名定理表明,T切割的最小基数等于T连接的分数填充的最大值。本文证明了对于某些整数a, k≥0,所分配的分数可以取为并矢有理,即取为a 2k的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Dyadic Fractional Packings of $T$-Joins
Let G = (V,E) be a graph, and T ⊆ V a nonempty subset of even cardinality. The famous theorem of Edmonds and Johnson on the T -join polyhedron implies that the minimum cardinality of a T -cut is equal to the maximum value of a fractional packing of T -joins. In this paper, we prove that the fractions assigned may be picked as dyadic rationals, i.e. of the form a 2k for some integers a, k ≥ 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信