{"title":"扩散-热和热-扩散对两相边界层流体-颗粒悬浮和化学反应的影响:数值研究","authors":"K.L. Krupa Lakshmi , B.J. Gireesha , Rama.S.R. Gorla , B. Mahanthesh","doi":"10.1016/j.jnnms.2015.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>A numerical investigation on laminar boundary layer flow, heat and mass transfer of two-phase particulate suspension induced by a linearly stretching sheet is carried out. In the mathematical formulation both the fluid and particle phases are treated as two separate interacting continua. The effects of magnetic field, diffusion-thermo, thermal-diffusion, thermal radiation and first order chemical reaction are taken into the account. The relevant governing partial differential equations corresponding to the momentum, energy and concentration are transformed into a system of non-linear ordinary differential equations with the help of appropriate similarity transformations and then solved numerically using Runge–Kutta-Fehlberg fourth fifth order method along with shooting scheme. The effects of the relevant physical parameters on the flow, heat and mass transfer characteristics of both fluid and particle phases were numerically obtained and discussed in detail. It is found that, the momentum, thermal and solute boundary layer thickness decreases with increasing the particles loading.</p></div>","PeriodicalId":17275,"journal":{"name":"Journal of the Nigerian Mathematical Society","volume":"35 1","pages":"Pages 66-81"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jnnms.2015.10.003","citationCount":"38","resultStr":"{\"title\":\"Effects of diffusion-thermo and thermo-diffusion on two-phase boundary layer flow past a stretching sheet with fluid-particle suspension and chemical reaction: A numerical study\",\"authors\":\"K.L. Krupa Lakshmi , B.J. Gireesha , Rama.S.R. Gorla , B. Mahanthesh\",\"doi\":\"10.1016/j.jnnms.2015.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A numerical investigation on laminar boundary layer flow, heat and mass transfer of two-phase particulate suspension induced by a linearly stretching sheet is carried out. In the mathematical formulation both the fluid and particle phases are treated as two separate interacting continua. The effects of magnetic field, diffusion-thermo, thermal-diffusion, thermal radiation and first order chemical reaction are taken into the account. The relevant governing partial differential equations corresponding to the momentum, energy and concentration are transformed into a system of non-linear ordinary differential equations with the help of appropriate similarity transformations and then solved numerically using Runge–Kutta-Fehlberg fourth fifth order method along with shooting scheme. The effects of the relevant physical parameters on the flow, heat and mass transfer characteristics of both fluid and particle phases were numerically obtained and discussed in detail. It is found that, the momentum, thermal and solute boundary layer thickness decreases with increasing the particles loading.</p></div>\",\"PeriodicalId\":17275,\"journal\":{\"name\":\"Journal of the Nigerian Mathematical Society\",\"volume\":\"35 1\",\"pages\":\"Pages 66-81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jnnms.2015.10.003\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0189896515000566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0189896515000566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of diffusion-thermo and thermo-diffusion on two-phase boundary layer flow past a stretching sheet with fluid-particle suspension and chemical reaction: A numerical study
A numerical investigation on laminar boundary layer flow, heat and mass transfer of two-phase particulate suspension induced by a linearly stretching sheet is carried out. In the mathematical formulation both the fluid and particle phases are treated as two separate interacting continua. The effects of magnetic field, diffusion-thermo, thermal-diffusion, thermal radiation and first order chemical reaction are taken into the account. The relevant governing partial differential equations corresponding to the momentum, energy and concentration are transformed into a system of non-linear ordinary differential equations with the help of appropriate similarity transformations and then solved numerically using Runge–Kutta-Fehlberg fourth fifth order method along with shooting scheme. The effects of the relevant physical parameters on the flow, heat and mass transfer characteristics of both fluid and particle phases were numerically obtained and discussed in detail. It is found that, the momentum, thermal and solute boundary layer thickness decreases with increasing the particles loading.