一种新颖的P300脑机接口范例的性能与电和振动模式

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Chenxi Chu, Jingjing Luo, Q. Du, Xiangke Han, Shijie Guo
{"title":"一种新颖的P300脑机接口范例的性能与电和振动模式","authors":"Chenxi Chu, Jingjing Luo, Q. Du, Xiangke Han, Shijie Guo","doi":"10.1109/CYBER55403.2022.9907089","DOIUrl":null,"url":null,"abstract":"A novel tactile P300 paradigm was proposed for Brain-Computer Interface(BCI), in which only two types of stimuli was used to distinguish different targets. We also adapted an algorithm for intention recognition, which used spatial information to distinguish different stimulation sites, and frequency information to identify attended-target stimuli and disturbances. Our novel paradigm was verified on both vibration and electrical stimuli modes, and achieved an average classification accuracy of 95.21% for vibration stimuli mode and 94.88% for electrical stimuli mode, respectively. Furthermore, we evaluated performances of brain's functional connectivity by the correlation coefficient, and preliminarily explored the similarities and differences between vibration stimuli mode and electrical stimuli mode.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"24 1","pages":"486-491"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Performance Of A Novel P300 Brain-Computer Interface Paradigm With Electrical And Vibration Modes\",\"authors\":\"Chenxi Chu, Jingjing Luo, Q. Du, Xiangke Han, Shijie Guo\",\"doi\":\"10.1109/CYBER55403.2022.9907089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel tactile P300 paradigm was proposed for Brain-Computer Interface(BCI), in which only two types of stimuli was used to distinguish different targets. We also adapted an algorithm for intention recognition, which used spatial information to distinguish different stimulation sites, and frequency information to identify attended-target stimuli and disturbances. Our novel paradigm was verified on both vibration and electrical stimuli modes, and achieved an average classification accuracy of 95.21% for vibration stimuli mode and 94.88% for electrical stimuli mode, respectively. Furthermore, we evaluated performances of brain's functional connectivity by the correlation coefficient, and preliminarily explored the similarities and differences between vibration stimuli mode and electrical stimuli mode.\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"24 1\",\"pages\":\"486-491\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBER55403.2022.9907089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER55403.2022.9907089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的触觉P300脑机接口(BCI)模式,该模式下仅使用两种类型的刺激来区分不同的目标。我们还采用了一种意图识别算法,该算法使用空间信息来区分不同的刺激点,使用频率信息来识别参与目标的刺激和干扰。我们的新范式在振动和电刺激模式下进行了验证,振动和电刺激模式的平均分类准确率分别为95.21%和94.88%。此外,我们通过相关系数评价脑功能连通性的表现,并初步探讨振动刺激模式与电刺激模式的异同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Performance Of A Novel P300 Brain-Computer Interface Paradigm With Electrical And Vibration Modes
A novel tactile P300 paradigm was proposed for Brain-Computer Interface(BCI), in which only two types of stimuli was used to distinguish different targets. We also adapted an algorithm for intention recognition, which used spatial information to distinguish different stimulation sites, and frequency information to identify attended-target stimuli and disturbances. Our novel paradigm was verified on both vibration and electrical stimuli modes, and achieved an average classification accuracy of 95.21% for vibration stimuli mode and 94.88% for electrical stimuli mode, respectively. Furthermore, we evaluated performances of brain's functional connectivity by the correlation coefficient, and preliminarily explored the similarities and differences between vibration stimuli mode and electrical stimuli mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信