A. S. Schulz, D. Grishina, C. A. M. Harteveid, A. Pacureanu, A. Lagendijk, J. Huskens, G. Vancso, P. Cloetens, W. Vos
{"title":"在三维光子晶体中放置量子点并找到它们","authors":"A. S. Schulz, D. Grishina, C. A. M. Harteveid, A. Pacureanu, A. Lagendijk, J. Huskens, G. Vancso, P. Cloetens, W. Vos","doi":"10.1109/CLEOE-EQEC.2019.8873004","DOIUrl":null,"url":null,"abstract":"It is a major outstanding goal in Nanophotonics to precisely place quantum emitters inside a three-dimensional (3D) metamaterial. It is well-known that such control offers exquisite control over cavity QED, spontaneous and stimulated emission, and even non-linear optics [1]. Theory predicts that the emission of an emitter, e.g. a quantum dot, varies spatially on 100s nm scale [2]. Thus, the challenge is to place emitters with a precision better than Δx < 100 nm. We present our newly developed chemical toolbox to fix the positions of quantum dots with a polymer brush layer with thicknesses in the 10s nm range in silicon nanostructures [3].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"115 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Placing Quantum Dots in 3D Photonic Crystals and Finding Them Back\",\"authors\":\"A. S. Schulz, D. Grishina, C. A. M. Harteveid, A. Pacureanu, A. Lagendijk, J. Huskens, G. Vancso, P. Cloetens, W. Vos\",\"doi\":\"10.1109/CLEOE-EQEC.2019.8873004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a major outstanding goal in Nanophotonics to precisely place quantum emitters inside a three-dimensional (3D) metamaterial. It is well-known that such control offers exquisite control over cavity QED, spontaneous and stimulated emission, and even non-linear optics [1]. Theory predicts that the emission of an emitter, e.g. a quantum dot, varies spatially on 100s nm scale [2]. Thus, the challenge is to place emitters with a precision better than Δx < 100 nm. We present our newly developed chemical toolbox to fix the positions of quantum dots with a polymer brush layer with thicknesses in the 10s nm range in silicon nanostructures [3].\",\"PeriodicalId\":6714,\"journal\":{\"name\":\"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)\",\"volume\":\"115 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE-EQEC.2019.8873004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8873004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Placing Quantum Dots in 3D Photonic Crystals and Finding Them Back
It is a major outstanding goal in Nanophotonics to precisely place quantum emitters inside a three-dimensional (3D) metamaterial. It is well-known that such control offers exquisite control over cavity QED, spontaneous and stimulated emission, and even non-linear optics [1]. Theory predicts that the emission of an emitter, e.g. a quantum dot, varies spatially on 100s nm scale [2]. Thus, the challenge is to place emitters with a precision better than Δx < 100 nm. We present our newly developed chemical toolbox to fix the positions of quantum dots with a polymer brush layer with thicknesses in the 10s nm range in silicon nanostructures [3].