基于冗余表示的可验证延迟函数类群平方的低延迟设计与实现

Danyang Zhu, Rong-Xian Zhang, Lun Ou, Jing Tian, Zhongfeng Wang
{"title":"基于冗余表示的可验证延迟函数类群平方的低延迟设计与实现","authors":"Danyang Zhu, Rong-Xian Zhang, Lun Ou, Jing Tian, Zhongfeng Wang","doi":"10.46586/tches.v2023.i1.438-462","DOIUrl":null,"url":null,"abstract":"A verifiable delay function (VDF) is a function whose evaluation requires running a prescribed number of sequential steps over a group while the result can be efficiently verified. As a kind of cryptographic primitives, VDFs have been adopted in rapidly growing applications for decentralized systems. For the security of VDFs in practical applications, it is widely agreed that the fastest implementation for the VDF evaluation, sequential squarings in a group of unknown order, should be publicly provided. To this end, we propose a possible minimum latency hardware implementation for the squaring in class groups by algorithmic and architectural level co-optimization. Firstly, low-latency architectures for large-number division, multiplication, and addition are devised using redundant representation, respectively. Secondly, we present two hardware-friendly algorithms which avoid time-consuming divisions involved in calculations related to the extended greatest common divisor (XGCD) and design the corresponding low-latency architectures. Besides, we schedule and reuse these computation modules to achieve good resource utilization by using compact instruction control. Finally, we code and synthesize the proposed design under the TSMC 28nm CMOS technology. The experimental results show that our design can achieve a speedup of 3.6x compared to the state-of-the-art implementation of the squaring in the class group. Moreover, compared to the optimal C++ implementation over an advanced CPU, our implementation is 9.1x faster.","PeriodicalId":13186,"journal":{"name":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","volume":"20 1","pages":"438-462"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-Latency Design and Implementation of the Squaring in Class Groups for Verifiable Delay Function Using Redundant Representation\",\"authors\":\"Danyang Zhu, Rong-Xian Zhang, Lun Ou, Jing Tian, Zhongfeng Wang\",\"doi\":\"10.46586/tches.v2023.i1.438-462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A verifiable delay function (VDF) is a function whose evaluation requires running a prescribed number of sequential steps over a group while the result can be efficiently verified. As a kind of cryptographic primitives, VDFs have been adopted in rapidly growing applications for decentralized systems. For the security of VDFs in practical applications, it is widely agreed that the fastest implementation for the VDF evaluation, sequential squarings in a group of unknown order, should be publicly provided. To this end, we propose a possible minimum latency hardware implementation for the squaring in class groups by algorithmic and architectural level co-optimization. Firstly, low-latency architectures for large-number division, multiplication, and addition are devised using redundant representation, respectively. Secondly, we present two hardware-friendly algorithms which avoid time-consuming divisions involved in calculations related to the extended greatest common divisor (XGCD) and design the corresponding low-latency architectures. Besides, we schedule and reuse these computation modules to achieve good resource utilization by using compact instruction control. Finally, we code and synthesize the proposed design under the TSMC 28nm CMOS technology. The experimental results show that our design can achieve a speedup of 3.6x compared to the state-of-the-art implementation of the squaring in the class group. Moreover, compared to the optimal C++ implementation over an advanced CPU, our implementation is 9.1x faster.\",\"PeriodicalId\":13186,\"journal\":{\"name\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"volume\":\"20 1\",\"pages\":\"438-462\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tches.v2023.i1.438-462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tches.v2023.i1.438-462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可验证延迟函数(VDF)是一种函数,它的求值需要在一组上运行规定数量的连续步骤,而结果可以有效地验证。vdf作为一种加密原语,已被广泛应用于分布式系统中。为了保证VDF在实际应用中的安全性,人们普遍认为应该公开提供VDF求值的最快实现方法,即一组未知阶数的顺序平方。为此,我们提出了一种可能的最小延迟硬件实现,通过算法和架构级别的协同优化来实现类组中的平方。首先,采用冗余表示分别设计了大数除法、乘法和加法的低延迟架构。其次,我们提出了两种硬件友好的算法,避免了与扩展最大公约数(XGCD)相关的计算中耗时的分割,并设计了相应的低延迟架构。此外,我们利用紧凑的指令控制,对这些计算模块进行调度和重用,以达到良好的资源利用率。最后,我们在台积电28纳米CMOS技术下对所提出的设计进行了编码和综合。实验结果表明,与类组中最先进的平方实现相比,我们的设计可以实现3.6倍的加速。此外,与在高级CPU上的最优c++实现相比,我们的实现要快9.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Latency Design and Implementation of the Squaring in Class Groups for Verifiable Delay Function Using Redundant Representation
A verifiable delay function (VDF) is a function whose evaluation requires running a prescribed number of sequential steps over a group while the result can be efficiently verified. As a kind of cryptographic primitives, VDFs have been adopted in rapidly growing applications for decentralized systems. For the security of VDFs in practical applications, it is widely agreed that the fastest implementation for the VDF evaluation, sequential squarings in a group of unknown order, should be publicly provided. To this end, we propose a possible minimum latency hardware implementation for the squaring in class groups by algorithmic and architectural level co-optimization. Firstly, low-latency architectures for large-number division, multiplication, and addition are devised using redundant representation, respectively. Secondly, we present two hardware-friendly algorithms which avoid time-consuming divisions involved in calculations related to the extended greatest common divisor (XGCD) and design the corresponding low-latency architectures. Besides, we schedule and reuse these computation modules to achieve good resource utilization by using compact instruction control. Finally, we code and synthesize the proposed design under the TSMC 28nm CMOS technology. The experimental results show that our design can achieve a speedup of 3.6x compared to the state-of-the-art implementation of the squaring in the class group. Moreover, compared to the optimal C++ implementation over an advanced CPU, our implementation is 9.1x faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信